All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Special Indices II (Posted on 2023-04-05) Difficulty: 2 of 5
Determine four distinct nonnegative integers A, B, C, and D that satisfy this equation:
          2A + 3B + 7C + 12D = 2021
*** For an extra challenge, solve this puzzle without using a computer program/excel solver assisted method.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
other "years" | Comment 2 of 3 |
clc, clearvars
for yr=2020:2025
fprintf('%4d    ',yr)
for a=0:floor(log(yr)/log(2))
    for b=0:floor(log(yr)/log(3))
        for c=0:floor(log(yr)/log(7))
            for d=0:floor(log(yr)/log(12))
                if 2^a+3^b+7^c+12^d == yr
                   fprintf('%2d',[a b c d]) 
                end
            end
        end
    end
end
fprintf('\n')
end

finds

         a b c d
2020    
2021     0 5 2 3      Current puzzle solution
2022     1 5 2 3
2023    
2024     2 5 2 3
2025   

for some recent and near-future year numbers.

  Posted by Charlie on 2023-04-05 10:13:29
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information