All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
BCCDEFGGB and Perfect Square (Posted on 2023-04-10) Difficulty: 3 of 5
A perfect square is represented by BCCDEFGGB, where each of the letters is denoted by a distinct nonzero digit.
Furthermore:
  • Each of BCCD and EFGGB is a perfect square.
  • Each of EF and GGB is a perfect square.
Determine the square root of the number represented by BCCDEFGGB.

Note: Computer program solutions are welcome but a semi-analytic (calculator+p&p) method is preferred.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 3
digs='123456789'
asgn=combinator(9,6,'p');
for ch=1:length(asgn)
   asg=digs(asgn(ch,:));
   eval(['b=''' asg(1) ''';']);
   eval(['c=''' asg(2) ''';']) ;  
   eval(['d=''' asg(3) ''';']);
   eval(['e=''' asg(4) ''';']) ;  
   eval(['f=''' asg(5) ''';']);
   eval(['g=''' asg(6) ''';']) ;  
   bccdefggb=str2double([b c c d e f g g b]);
   if sqrt(bccdefggb)==floor(sqrt(bccdefggb))
      ef=str2double([e f]);
      ggb=str2double([g g b]);
      bccd=str2double([b c c d]);
      efggb=str2double([e f g g b]);
      if sqrt(bccd)==floor(sqrt(bccd))
        if sqrt(efggb)==floor(sqrt(efggb))
          if sqrt(ef)==floor(sqrt(ef))
            if sqrt(ggb)==floor(sqrt(ggb))
              disp([bccdefggb sqrt(bccdefggb)])
              disp([ef sqrt(ef)])
              disp([efggb sqrt(efggb)])
              disp([ggb sqrt(ggb)])
              disp([bccd sqrt(bccd)])
            end
          end
        end
    end
      
   end
end

finds
               Value        square
                             root
BCCDEFGGB    577681225       24035
EF                  81           9
EFGGB            81225         285
GGB                225          15
BCCD              5776          76

  Posted by Charlie on 2023-04-10 14:30:16
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information