All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Pandigital and Pretty Powerful V (Posted on 2023-04-20) Difficulty: 3 of 5
Determine all triplets (X, Y, Z) of base 12 positive integers such that the duodecimal representation of XY*(X+1)Z has no leading zeroes and contains each of the digits from 0 to B exactly once, with the restriction that: at least one of Y and Z is different from 1.

What is the total number of such triplets without any restriction?

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution, I hope | Comment 1 of 2
clearvars,clc

largest=base2dec('ba9876543210',12);
lowval=base2dec('1023456789ab',12);
 
for x1=1:21000
 y1=floor(log(lowval)/log(x1));
 p1=x1^y1;
 while y1<log(largest)/log(x1)
  for x2=[x1+1 x1-1] 
    if x2>1
      y2=floor(log(lowval/p1)/log(x2));
      p2=x2^y2;
      while p1*p2<largest
        v=p1*p2;
        if v>=lowval && v<=largest && v==floor(v)
          duo=dec2base(v,12);
          if isequal('0123456789AB',unique(duo))
            disp([x1,y1,x2,y2])
            disp([dec2base(x1,12) ' ' dec2base(x2,12)])
            disp(v)
            disp(duo)
            disp(' ')
          end
        end
        y2=y2+1;
        p2=p2*x2;
      end
    end
  end
  y1=y1+1;
  p1=p1*x1;
 end
end
  
  
  
shows

   287     4   286     1
1BB 1BA
             1940410518046
2740936815BA
 
       17380           2       17381           1
A084 A085
             5250181336400
70962B1345A8
 

meaning 1BB^4 * 1BA^1 = 2740936815BA 
   and  A084^2 * A085^1 = 70962B1345A8

In decimal, that's 

   287^4 * 286^1 = 1940410518046
   
and

   17380^2 * 17381^1 = 5250181336400

  Posted by Charlie on 2023-04-20 21:48:13
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information