All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes
Inscribed Polygon Crossed Root Side Resolution (Posted on 2023-04-29) Difficulty: 3 of 5
Consider a convex polygon such that:
  • Each of its sides correspond to the square root of a positive integer.
  • The polygon can be inscribed in an unit circle.
Determine the total number of polygons that simultaneously satisfy the 2 properties mentioned above.

Note: Polygons that are rotations and reflections of each other are considered the same.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
solution | Comment 2 of 6 |
The integer whose square root is one side cannot be larger than 3, as sqrt(4) ia already 2, which is the diameter of the inscriping circle.

For each of the squares of the sides, 1, 2 and 3, follows the number of degrees subtended at the center of the circle by the side:

1          60                         
2          90                         
3         120    

(based on twice the arcsin of half the square root)

The subtended angles must add up to 360°.

                             ways of arranging
120 + 120 + 120                1        `
120 + 120 + 60 + 60            2 (alternating vs together)        
120 + 90 + 90 + 60             2 (60 opposite or adjacent 120)
120 + 60 + 60 + 60 + 60        1
90 + 90 + 90 + 90              1
90 + 90 + 60 + 60 + 60         2 (90's adjacent or separated)
60 + 60 + 60 + 60 + 60 + 60    1
                             ---
                              10
                              
So there are 10 such polygons.                              


  Posted by Charlie on 2023-04-29 08:14:14
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information