All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes
Inscribed Polygon Crossed Root Side Resolution (Posted on 2023-04-29) Difficulty: 3 of 5
Consider a convex polygon such that:
  • Each of its sides correspond to the square root of a positive integer.
  • The polygon can be inscribed in an unit circle.
Determine the total number of polygons that simultaneously satisfy the 2 properties mentioned above.

Note: Polygons that are rotations and reflections of each other are considered the same.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution re: my solution -- corrected | Comment 3 of 6 |
(In reply to solution by Charlie)

I see from Steve Herman's comment that I prematurely rejected sqrt(4).  The corrected answer:


                             ways of arranging
120 + 120 + 120                1        `
120 + 120 + 60 + 60            2 (alternating vs together)        
120 + 90 + 90 + 60             2 (60 opposite or adjacent 120)
120 + 60 + 60 + 60 + 60        1
90 + 90 + 90 + 90              1
90 + 90 + 60 + 60 + 60         2 (90's adjacent or separated)
60 + 60 + 60 + 60 + 60 + 60    1
180 + 60 + 60 + 60             1
180 + 90 + 90                  1
180 + 60 + 120                 1
                             ---
                              13
                              
So there are 13 such polygons.  

  Posted by Charlie on 2023-04-29 08:25:02
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information