Show that there are infinitely many integers n such that:
1) All digits of n in base 10 are strictly greater than 1.
2) If you take the product of any 4 digits of n, then it divides n.
(10^27- 1)/3 = 3333333333333333333333333 which is
divisible by 3*3*3*3= 81
We could vary the value of n , whenever (10^(27*n) -1)/27, and get an infinity of many integers satisfying the given conditions.