If the tetradecimal (base 14) number c#95d# is divisible by the tetradecimal number 76, then determine the missing digits.
Note: Each hash represents a digit, whether same or different.
Each octothorpe (pound sign, number sign, hash) is a 6, as
clearvars,clc
for d1d=1:13
d1=dec2base(d1d,14);
for d5d=0:13
d5=dec2base(d5d,14);
ndec=base2dec([d1 '95D' d5],14);
if mod(ndec,7*14+6)==0
fprintf('%s %8d\n',[d1 '95D' d5],ndec)
end
end
end
finds
695D6 256360
base-14 decimal
as being the number divisible by decimal 104, the quotient being 2465, or C81 in base 14.
|
Posted by Charlie
on 2023-06-22 13:43:26 |