All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Science
Let there be Light! (Posted on 2023-07-04) Difficulty: 4 of 5
It’s common knowledge that the length of a day (time from sunrise to sunset) varies over the year and with one’s location on the earth. Given only the following, can you derive an approximate equation for the length of a day (in hours) of any specific location on the earth, on any given day of the year?

1) The inclination of the earth’s rotational axis is 23.45 degrees

2) The length of a day is exactly 24 hours

3) The length of a year is exactly 365 days

4) Location on earth is given by the latitude

You are allowed to ignore secondary (but real!) effects such as the earth’s non-circular orbit, the sun being a disc, refraction of sunlight by the atmosphere, etc. To allow easier comparison of different solutions, let’s also assume that North Latitude is positive, and that the Winter Solstice in the Northern Hemisphere is “day 0” (Hint: therefore also day 365!) of the year.

See The Solution Submitted by Kenny M    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution (spoiler) | Comment 1 of 6
The first thing you need is the distance of the sun from the celestial equator in degrees; this is called the declination, so we'll use d to represent it. So we'll use D to represent the day past the December solstice.

The declination, d, depends on the 23.45° tilt of the ecliptic (the sun's path on the celestial sphere) and the sun's celestial longitude, l, which is (D*360/365 - 90°) as it is measured from the March equinox.

Here we start with the spherical trig. (Later we'll simplify for a differnt formula to skip over this spherical trig portion, but even then we'll need the spherical trig in a later step.) We know the 23.45° angle where the ecliptic meets the equator, and the 90° angle where the sought side of size d meets the equator, and l, which is the hypotenuse of this spherical right triangle. The spherical law of sines tells us that sin(l)/sin(90°) = sin(d)/sin(23.45°), so 

d = arcsin(sin(l)*sin(23.45°))

This arc, d, is the complement of the distance of the sun from the north celestial pole, which is one side of the triangle we'll need to use. That triangle's vertices are the north pole, the sun and the zenith of the location at the time of sunrise or sunset. The relevant information for this triangle is:

Zenith to sun at sunrise/set = 90°
North pole to sun = 90° - d  (this is more than 90° when d is negative)
North pole to observer's zenith = 90° - L, where L is the observer's latitude.

Here we get to the unavoidable spherical trig, via the spherical law of cosines, as we need to know the angle SPZ (Sun, Pole, Zenith), called the hour angle, so we'll call its measure h, rather than P:

cos(90°) = cos(90°-L)*cos(90°-d) + sin(90°-L)*sin(90°-d)*cos(h)

where the 90° on the LHS is the desired distance from the zenith.

Rearranging, substituting 0 for cos(90) and switching sin and cos to avoid complementing:

cos(h) = -sin(L)*sin(d) / (cos(L)*cos(d)) = -tan(L)*tan(d)

If h is measured in degrees and you want time measured in hours,

t = h/15

but that's only half a day, from local noon to sunset (or sunrise), so we need twice that: 2*h/15.

Working backward:

Day length = 

2*arccos(-tan(L)*tan(d)) / 15

or

2*arccos(-tan(L)*tan(arcsin(sin(l)*sin(23.45°)))) / 15

or

2*arccos(-tan(L)*tan(arcsin(sin(D*360/365 - 90)*sin(23.45°)))) / 15

Simplification:

As mentioned before, the first application of spherical trig could be substituted with a simplified formula for the distance of the sun north of the celestial equator: 23.45*sin((D-90)*(360/365))--.  Then you'd have

2*arccos(-tan(L)*tan(23.45*sin((D-90)*(360/365)))) / 15


clearvars,clc
L=40; 
for D=0:10:360 % in days
  formula1=2*acosd(-tand(L)*tand(asind(sind(D*360/365 - 90)*sind(23.45)))) / 15;
  formula2=2*acosd(-tand(L)*tand(23.45*sind((D-90)*(360/365)))) / 15;
  fprintf('%4d %6.2f %6.2f\n',D,formula1,formula2)
end

compares the two formulae at latitude 40° North:

 day original less exact
     formula   formula
   0   9.15   9.15 
  10   9.21   9.22 
  20   9.36   9.37 
  30   9.60   9.61 
  40   9.90   9.92 
  50  10.26  10.28 
  60  10.66  10.68 
  70  11.08  11.11 
  80  11.51  11.55 
  90  11.95  12.00 
 100  12.38  12.45 
 110  12.82  12.89 
 120  13.24  13.32 
 130  13.64  13.72 
 140  14.01  14.08 
 150  14.33  14.39 
 160  14.59  14.63 
 170  14.76  14.78 
 180  14.84  14.85 
 190  14.82  14.81 
 200  14.69  14.68 
 210  14.47  14.46 
 220  14.18  14.16 
 230  13.83  13.81 
 240  13.44  13.42 
 250  13.03  13.00 
 260  12.60  12.56 
 270  12.16  12.11 
 280  11.73  11.66 
 290  11.29  11.22 
 300  10.86  10.78 
 310  10.46  10.38 
 320  10.08  10.00 
 330   9.74   9.68 
 340   9.47   9.42 
 350   9.27   9.25 
 360   9.17   9.16 


The main difference from published times comes from atmospheric refraction and the radius of the sun's disk, which can add about five minutes. The eccentricity of the earth's orbit only changes the dates slightly at which the given dates the times are achieved.

The atmospheric refraction and the sun's apparent radius can be incorporated by using (.25° for the sun's apparent radius and .55° for atmospheric refraction):

cos(90.8°) = cos(90°-L)*cos(90°-d) + sin(90°-L)*sin(90°-d)*cos(h)

to determine the hour angle h.

h = arccos((cos(90.8°) - cos(90°-L)*cos(90°-d)) / (sin(90°-L)*sin(90°-d)) )

For comparison the formula incorporating the correction for refraction is appended on the right:

clearvars,clc
L=40; 
for D=0:10:360 % in days
  formula1=2*acosd(-tand(L)*tand(asind(sind(D*360/365 - 90)*sind(23.45)))) / 15;
  formula2=2*acosd(-tand(L)*tand(23.45*sind((D-90)*(360/365)))) / 15;
  
  l=(D*360/365 - 90);
  d = asind(sind(l)*sind(23.45));
  h= acosd((cosd(90.8) - cosd(90-L)*cosd(90-d)) / (sind(90-L)*sind(90-d)) );
  t=2*h/15;
  
  fprintf('%4d %6.2f %6.2f %6.2f\n',D,formula1,formula2,t)
end


 day original less exact  original with
     formula   formula    correction for
                           refraction
   0   9.15     9.15         9.32
  10   9.21     9.22         9.37
  20   9.36     9.37         9.52
  30   9.60     9.61         9.75
  40   9.90     9.92        10.06
  50  10.26    10.28        10.41
  60  10.66    10.68        10.80
  70  11.08    11.11        11.22
  80  11.51    11.55        11.65
  90  11.95    12.00        12.08
 100  12.38    12.45        12.52
 110  12.82    12.89        12.96
 120  13.24    13.32        13.38
 130  13.64    13.72        13.79
 140  14.01    14.08        14.16
 150  14.33    14.39        14.49
 160  14.59    14.63        14.75
 170  14.76    14.78        14.93
 180  14.84    14.85        15.01
 190  14.82    14.81        14.98
 200  14.69    14.68        14.85
 210  14.47    14.46        14.63
 220  14.18    14.16        14.33
 230  13.83    13.81        13.98
 240  13.44    13.42        13.59
 250  13.03    13.00        13.17
 260  12.60    12.56        12.74
 270  12.16    12.11        12.30
 280  11.73    11.66        11.87
 290  11.29    11.22        11.43
 300  10.86    10.78        11.01
 310  10.46    10.38        10.60
 320  10.08    10.00        10.23
 330   9.74     9.68         9.90
 340   9.47     9.42         9.62
 350   9.27     9.25         9.43
 360   9.17     9.16         9.33


  Posted by Charlie on 2023-07-04 17:31:41
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information