All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Probability
Matrix probability (Posted on 2023-09-03) Difficulty: 3 of 5
Let n≥2 be an integer, and let O be the n×n matrix whose entries are all equal to 0. Two distinct entries of the matrix are chosen uniformly at random, and those two entries are changed from 0 to 1. Call the resulting matrix A. Determine the probability that A2 = O, as a function of n.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution (spoiler) | Comment 1 of 2
The program below calculates the probability that the resulting square of A does not equal O.

But what was wanted is if it is equal to  O.

clearvars,clc
for n=2:10
  ct=0; hit=0;
  for r1=1:n
    for c1=1:n
      for r2=1:n
        for c2=1:n
          if r2~=r1 || c2~=c1
            A=zeros(n);
            A(r1,c1)=1;
            A(r2,c2)=1;
            A2=A^2;
            if ~isequal(A2,zeros(n))
              hit=hit+1;
            end
            ct=ct+1;
          end
        end
      end
    end
  end
  fprintf('%2d %4d %4d %7s %13.11f ',n, hit, ct, sym(hit/ct), hit/ct)
end

finds

 n hits cases        prob
                frac    decimal
 
 2   12   12       1 1.00000000000
 3   60   72     5/6 0.83333333333
 4  168  240    7/10 0.70000000000
 5  360  600     3/5 0.60000000000
 6  660 1260   11/21 0.52380952381
 7 1092 2352   13/28 0.46428571429
 8 1680 4032    5/12 0.41666666667
 9 2448 6480   17/45 0.37777777778
10 3420 9900   19/55 0.34545454545

OEIS finds the hits column to be in 2*n*(n+1)*(2n+1). However n needs to be adjusted: 2*(n-1)*n*(2*n-1). To get the probability, this is divided by n^2 * (n^2 - 1):

 2*(n-1)*n*(2*n-1) / (n^2 * (n^2 - 1))
 
which simplifies to

(4*n - 2)/(n*(n + 1))

so for the complementary probability that A^2 = O, use

1 - (4*n - 2)/(n*(n + 1))




The formula found originally is confirmed by

for n=2:10
  fprintf('%2d %13.11f ',n,(4*n - 2)/(n*(n + 1)))
end

 2 1.00000000000
 3 0.83333333333
 4 0.70000000000
 5 0.60000000000
 6 0.52380952381
 7 0.46428571429
 8 0.41666666667
 9 0.37777777778
10 0.34545454545

Again these numbers should be subtracted from 1 to get the desired probability.

Modified to reverse the not equal, to equal.

Edited on September 3, 2023, 2:27 pm
  Posted by Charlie on 2023-09-03 12:13:26

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information