All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Checking the quantity (Posted on 2023-09-23) Difficulty: 3 of 5

p^a+q^b=r^c

How many distinct solutions of the equation above are there, subject to the following constraints:

p, q, & r distinct primes
a, b, & c distinct positive integers,
each more than one
None of the powers exceeds 1111.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts Computer solution for smaller numbers | Comment 1 of 8
I found 3 solutions,
but this search was limited to primes up to 2000 and powers from 2 to 30:

 32   49    81
2^5 + 7^2 = 3^4

 128   4913    5041
2^7 + 17^3 = 71^2

 169   343    512
13^2 + 7^3 = 2^9

--------------
from itertools import combinations
def isprime(n):
    '''check if integer n is a prime'''
    n = abs(int(n))
    if n < 2:
        return False
    if n == 2:
        return True    
    if not n & 1:
        return False
    for x in range(3, int(n**0.5)+1, 2):
        if n % x == 0:
            return False
    return True

highest_prime = 2000
#highest_power = 1111
highest_power = 20  # for testing
primes = [i for i in range(highest_prime) if isprime(i)]
rcdict = {}
ans = []
for pr in primes:
    for po in range(2, highest_power+1):
        r2c = pr**po
        rcdict[r2c] = [pr,po]
rclist = sorted(rcdict.keys())
for comb in combinations(rclist,2):
    if comb[0]+comb[1] in rclist:
        p = rcdict[comb[0]][0]
        a = rcdict[comb[0]][1]
        q = rcdict[comb[1]][0]
        b = rcdict[comb[1]][1]
        r = rcdict[comb[0]+comb[1]][0]
        c = rcdict[comb[0]+comb[1]][1]
        if p==q or p==r or q==r:
            continue
        if a==b or b==c or a==c:
            continue
        print(' ', comb[0], ' ', comb[1], '  ',  comb[0]+comb[1])
        print('{}^{} + {}^{} = {}^{}'.format(p,a,q,b,r,c) )
        ans.append([p,a,q,b,r,c])

Edited on September 23, 2023, 5:57 pm
  Posted by Larry on 2023-09-23 17:55:06

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information