All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Checking the quantity (Posted on 2023-09-23) Difficulty: 3 of 5

p^a+q^b=r^c

How many distinct solutions of the equation above are there, subject to the following constraints:

p, q, & r distinct primes
a, b, & c distinct positive integers,
each more than one
None of the powers exceeds 1111.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts my computer findings | Comment 2 of 8 |
pr=sym(primes(100));
for w1=1:length(pr)
  p=pr(w1);
  for w2=w1+1:length(pr)
    q=pr(w2);
    for a=2:11
      for b=2:11
        if a~=b
          rhs=p^a+q^b;
          f1=factor(rhs);
          f=unique(f1);
          if length(f)==1 && length(f1)>1
            disp([p a q b f length(f1)])
          end
        end
      end
    end
  end
end

finds

[2, 4, 3, 2, 5, 2]
[2, 5, 7, 2, 3, 4]
[2, 7, 17, 3, 71, 2]
[7, 3, 13, 2, 2, 9]

before being cut off manually

meaning
 
  2^4 +3^2=5^2     b and c not distinct here -- ignore
  2^5 +7^2=3^4
  2^7+17^3=71^2
  7^3+13^2=2^9
  
  
  
  

  Posted by Charlie on 2023-09-23 20:05:21
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information