All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Relationship Crossed Minimum Value Determination (Posted on 2023-09-29) Difficulty: 3 of 5
Each of x, y, z, and u is a positive integer that satisfies this set of equations:
  • x + y = 3(z+u)
  • x + z = 4(y+u)
  • x + u = 5(y+z)
Determine the minimum value of x+y+z+u

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 2
The minimum sum is 120
 x    y   z   u  sum
83   7  13 17 120
166 14 26 34 240

Adding all 3 equations yields:
    3x = 8y + 7z + 6u 
Subtracting various pairs of equations yields:
    u = 4z - 5y
    z = 2u - 3y
    y = 5u - 6z
But I was not able to come up with an analytic full solution.

-------------
for y in range(1,200):
    for z in range(1,big):
        u = 4*z - 5*y
        x = (8*y + 7*z + 6*u)/3
        if x%1 == 0:
            x = int(x)
        if x + y != 3*(z+u):
            continue
        if x + z != 4*(y+u):
            continue
        if x + u != 5*(y+z):
            continue
        print(x,y,z,u, x+y+z+u)

Program Output:
83 7 13 17 120
166 14 26 34 240
249 21 39 51 360
332 28 52 68 480
415 35 65 85 600
498 42 78 102 720
etc

  Posted by Larry on 2023-09-29 07:19:25
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information