All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Reversible P and P^2 (Posted on 2023-10-31) Difficulty: 3 of 5
The prime P=13 reverses to the prime 31, and its square 169 reverses to 961, which is the square of 31.

Find additional examples where R(P)^2 = R(P^2).

Extra credit for any solution containing a digit larger than 3.

Notes:
. No palindromes like 101 or 10201.
. No modification of an existing solution by stuffing it with zeros, such as 113 modified to 1103 or 11003.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution No Subject | Comment 1 of 4
Using "R" to represent the reverse of P,

P   R   P^2 R^2
13 31 169 961
113 311 12769 96721
1021 1201 1042441 1442401
1031 1301 1062961 1692601
1103 3011 1216609 9066121        (this one does not count)
11003 30011 121066009 900660121  (this one does not count)
110221 122011 12148668841 14886684121
111211 112111 12367886521 12568876321

def isprime(n):
    '''check if integer n is a prime'''
    n = abs(int(n))
    if n < 2:
        return False
    if n == 2: 
        return True    
    if not n & 1: 
        return False
    for x in range(3, int(n**0.5)+1, 2):
        if n % x == 0:
            return False
    return True

def revN(n):
    return int(str(n)[::-1])

primes = [i for i in range(1,1000000) if isprime(i)]

ans = []
for p in primes:
    revp = revN(p)
    if p == revp:
        continue
    if revp < p:
        continue
    if not isprime(revp):
        continue
    if p**2 == revN(revp**2):
        print(p, revp, p**2, revp**2)
        ans.append([p, revp, p**2, revp**2])

  Posted by Larry on 2023-10-31 13:28:21
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information