All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
One-tenth Power Problem (Posted on 2023-11-02) Difficulty: 3 of 5
Determine the smallest possible positive integer P which is not a perfect tenth power, but in the decimal expansion of its tenth root, the decimal point is followed by at least 14 consecutive zeroes.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: solution Comment 3 of 3 |
(In reply to solution by Charlie)

My previous post purported to show the first 20 numbers fitting the puzzle description. However it neglected the possibility that an appropriate number might be higher than a perfect 10th power by more than one. The new version, below, shows the first 30 numbers meeting the criterion:


clc,clearvars
ct=0;
digits 50
for n=vpa(1):10000
  n10=n^10+1;
  root10=n10^(1/10);
  while root10-floor(root10)<=1e-14
    disp([n n10 root10])
    ct=ct+1;
    if ct>=30
      break
    end
    n10=n10+1;
    root10=n10^(1/10);
  end
  if ct>=30
    break
  end
end


P 10th root [28.0, 296196766695425.0, 28.000000000000009453175438877110054825436961510186]
[29.0, 420707233300202.0, 29.000000000000006893154598867248365910275859328894]
[30.0, 590490000000001.0, 30.000000000000005080526342529082141548791447634585]
[31.0, 819628286980802.0, 31.000000000000003782202309560617690285029165615172]
[31.0, 819628286980803.0, 31.000000000000007564404619121231227489774653460096]
[32.0, 1125899906842625.0, 32.000000000000002842170943040399607524793552056139]
[32.0, 1125899906842626.0, 32.000000000000005684341886080796943130180067602113]
[32.0, 1125899906842627.0, 32.000000000000008526512829121192006816159546641755]
[33.0, 1531578985264450.0, 33.000000000000002154639121945256299826478777000175]
[33.0, 1531578985264451.0, 33.00000000000000430927824389051133352484505844889]
[33.0, 1531578985264452.0, 33.000000000000006463917365835765101095098844347717]
[33.0, 1531578985264453.0, 33.000000000000008618556487781017602537240134698226]
[34.0, 2064377754059777.0, 34.000000000000001646985389817153135334001684104289]
[34.0, 2064377754059778.0, 34.000000000000003293970779634305552637183708196019]
[34.0, 2064377754059779.0, 34.000000000000004940956169451457251909546072275851]
[34.0, 2064377754059780.0, 34.000000000000006587941559268608233151088776344445]
[34.0, 2064377754059781.0, 34.000000000000008234926949085758496361811820402463]
[34.0, 2064377754059782.0, 34.000000000000009881912338902908041541715204450565]
[35.0, 2758547353515626.0, 35.000000000000001268783729791490303401576012800083]
[35.0, 2758547353515627.0, 35.000000000000002537567459582980192851455544101765]
[35.0, 2758547353515628.0, 35.00000000000000380635118937446966834963859390533]
[35.0, 2758547353515629.0, 35.000000000000005075134919165958729896125162211064]
[35.0, 2758547353515630.0, 35.000000000000006343918648957447377490915249019251]
[35.0, 2758547353515631.0, 35.000000000000007612702378748935611134008854330177]
[35.0, 2758547353515632.0, 35.000000000000008881486108540423430825405978144127]
[36.0, 3656158440062977.0, 36.000000000000000984640042004851098746881329087681]
[36.0, 3656158440062978.0, 36.000000000000001969280084009701955114759578346695]
[36.0, 3656158440062979.0, 36.000000000000002953920126014552569103634747777167]
[36.0, 3656158440062980.0, 36.000000000000003938560168019402940713506837379223]
[36.0, 3656158440062981.0, 36.00000000000000492320021002425306994437584715299]
>> 

  Posted by Charlie on 2023-11-02 09:35:16
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information