All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
A Limit of Sum Expressions (Posted on 2023-11-16) Difficulty: 3 of 5
Define F(n) as the number of ways to express a natural number n as a sum of 1's and 2's. Order matters.
Example F(4)=5 from 4 = 1+1+1+1 = 2+1+1 = 1+2+1 = 1+1+2 = 2+2.

Define G(n) as the number of ways to express a natural number n as a sum of odd natural numbers. Order matters.
Example G(4)=3 from 4 = 1+1+1+1 = 1+3 = 3+1

Evaluate the limit of F(n)/G(n) as n goes to infinity.

No Solution Yet Submitted by Brian Smith    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution Comment 2 of 2 |
F(n) = 1 + (n-1) + C(n-2,2) + C(n-3,3) + ...
                     ... + C(ceil(n/2),floor(n/2))
                     
     = C(n-0,0) + C(n-1,1) + C(n-2,2) + C(n-3,3) + ...
                         ... + C(ceil(n/2),floor(n/2))  
                         
G(n) is hard to describe in this closed form. It's best expressed as a recursive algorithm.  Starting with either n or n-1 (depending on odd or even n) and going to smaller numbers to 1, zero or as many as will fit inthe remainder are tried, and continue with the remaider after that so all branches are reached:

 for n=3:20
  F=0;
  for i=0:floor(n/2)
    F=F+nchoosek(n-i,i);
  end
  fprintf('%3d %7d',n,F)
  
  g=G(n);
  fprintf('%7d     %14.12f\n',g,F/g)
  
end

function gval=G(x)
  global ways remain dens qtys
  ways=0; goal=x; remain=x; dens=[]; qtys=[];
  forms(x);
  gval=ways;
end

function forms(st)
 global ways remain  dens qtys
 den=st;
 if mod(den,2)==0
   den=den-1;
 end
 for q=0:floor(remain/den)
   if q>0
     dens(end+1)=den;
     qtys(end+1)=q;
   end
   
   remain=remain-q*den;

   if remain==0
     ways=ways+factorial(sum(qtys))/prod(factorial(qtys));
   else
     forms(den-2);
   end

   remain=remain+q*den;

   if q>0
     dens(end)=[];
     qtys(end)=[];
   end
 end
 

end

  n     F(n)  G(n)        F(n)/G(n)

  3       3      2     1.500000000000
  4       5      3     1.666666666667
  5       8      5     1.600000000000
  6      13      8     1.625000000000
  7      21     13     1.615384615385
  8      34     21     1.619047619048
  9      55     34     1.617647058824
 10      89     55     1.618181818182
 11     144     89     1.617977528090
 12     233    144     1.618055555556
 13     377    233     1.618025751073
 14     610    377     1.618037135279
 15     987    610     1.618032786885
 16    1597    987     1.618034447822
 17    2584   1597     1.618033813400
 18    4181   2584     1.618034055728
 19    6765   4181     1.618033963167
 20   10946   6765     1.618033998522
 
G(n) is the nth Fibonacci number while F(n) is the (N+1)st Fibonacci number, so the ratio of the latter to the former approaches the Golden Ratio. 

  Posted by Charlie on 2023-11-16 09:46:42
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information