In triangle ABC, a=9 and a(cos A)+b(cos C)+c(cos B)=450/29. Find the value of sin A.
I was not having success at a trig solution.
I wrote a program that loops through 2 angles, calculating the third angle and finds the smallest error between the calculated function and the goal of 450/29
Results:
smallest error 0.00030537362685656433
numerator/29 (close to 450) 450.00885583517885
Angles A,B,C [43.6, 0.1, 136.3]
sin of angle A 0.6896195437356698
Putting that number into Wolfram Alpha finds:
sin((109 π)/450) ≈ 0.68961954373566978308
{edited to add: making the mesh 10 times finer does not change the value of sin(A) but shows slightly different angles
smallest error 0.00030537362685478797
numerator/29 (close to 450) 450.0088558351788
Angles A,B,C [43.6, 3.48, 132.92000000000002]
sin of angle A 0.6896195437356698 }
-----
import math
def sin(x):
return math.sin(x*math.pi/180)
def cos(x):
return math.cos(x*math.pi/180)
def f(A,B):
""" return value of function a(cos A)+b(cos C)+c(cos B). Angles A and B are inputs, C is calculated. A,B,C are angles in degrees, a,b,c are side lengths opposite the angles """
C = 180 - A - B
if A<=0 or B<=0 or C<=0 or A>=180 or B>=180 or C>=180:
return 0
a = 9
b = a * sin(B)/sin(A)
c = a * sin(C)/sin(A)
return a*cos(A) + b*cos(C) + c*cos(B)
goal = 450/29
leasterr = 10000
bestfunc = 10000
bestABC = []
for x in range(1,900):
for y in range(1,900):
A = x/10
B = y/10
if A+B >=90:
continue
C = 180 - A - B
if A<=0 or B<=0 or C<=0 or A>=180 or B>=180 or C>=180:
continue
func = f(A,B)
err = abs(goal - func)
if err < .0001:
print(A,B,C,goal, sin(A))
if err < leasterr:
leasterr = err
bestfunc = func
bestABC = [A,B,C]
print('smallest error ',leasterr)
print('numerator/29 (close to 450)', bestfunc*29)
print('Angles A,B,C', bestABC)
print('sin of angle A', sin(bestABC[0]) )
Edited on December 1, 2023, 12:53 pm
|
Posted by Larry
on 2023-12-01 12:43:17 |