All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Year Yearn 6 (Posted on 2023-12-11) Difficulty: 3 of 5
It is evident that: 2023= 7*172. Thus, 2023 is expressible in the form P*QR2.
Determine the three integers following 2023 having this property.
What are the three integers preceding 2023 that have this property?

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 2
        1936 = 4 * 22^2
        1944 = 6 * 18^2
        2000 = 5 * 20^2
         
        2025 = 1 * 45^2
        2025 = 9 * 15^2
        2028 = 3 * 26^2


based on

ylist=double.empty(0,3);
for p=1:9
  for qr=10:99
    qrs=qr^2;
    y=p*qrs;
    if y>1900 && y<2200
      ylist(end+1,:)=[y,p,qr];
    end
  end
end
ylist=sortrows(ylist,1)

finds

        year           p          qr
        1922           2          31
        1936           1          44
        1936           4          22
        1944           6          18
        2000           5          20
        2023           7          17
        2025           1          45
        2025           9          15
        2028           3          26
        2048           2          32
        2048           8          16
        2116           1          46
        2116           4          23
        2166           6          19
        2178           2          33
        2187           3          27

  Posted by Charlie on 2023-12-11 08:32:07
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information