Given that:
22022 - 31*22014 + 2n is a perfect square for certain positive integer n
Find the value of n
twoTerms=sym(2)^2022-31*sym(2)^2014;
for n=1:3000
v=twoTerms+sym(2)^n;
sr=round(sqrt(v));
if sr^2==v
disp([n sr])
end
end
finds
n=2020
results in a value that's
23316027292373176903837729067545639397816168702712411297976008450938838872478610
02545199672302954187285646008268595647491607228141666475358870244080254409877336
16194780175266242762583406157196047264283003650291295642743041978597182087442236
26663688902106923535445915756829095313676110665757759533718962176
squared
|
Posted by Charlie
on 2023-12-23 09:46:14 |