All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Area / Perimeter Ratio (Posted on 2024-01-04) Difficulty: 3 of 5
The triangle 5,12,13 has an area A=30 and a perimeter P=30, so A/P is 1.
The triangle 9,75,78 has an area A=324 and a perimeter P=162, so A/P is 2.

Find the smallest and largest integer-sided triangles where A/P is 10.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts partial solution | Comment 1 of 5
clc,clearvars
for a=1:100000
  for b=1:a 
    for c=a-b+1:b
      s=(a+b+c)/2;
      p=2*s;
      A=sqrt(s*(s-a)*(s-b)*(s-c));
       if   A/p==10
        fprintf('%5d %5d %5d %16.14f %5d %16.14f\n',[a b c A p A/p])
       end
    end
  end
end

The smallest is  75, 70, 65.


The abbreviated findings:


        sides      Area               perim.  ratio

   75    70    65 2100.00000000000000   210 10.00000000000000
   78    78    60 2160.00000000000000   216 10.00000000000000
   87    74    61 2220.00000000000000   222 10.00000000000000
   89    82    57 2280.00000000000000   228 10.00000000000000
   97    72    65 2340.00000000000000   234 10.00000000000000
  100    80    60 2400.00000000000000   240 10.00000000000000
  106    90    56 2520.00000000000000   252 10.00000000000000
  110   102    52 2640.00000000000000   264 10.00000000000000
  116    82    66 2640.00000000000000   264 10.00000000000000
  120    75    75 2700.00000000000000   270 10.00000000000000
  123   122    49 2940.00000000000000   294 10.00000000000000

   .  .  .

10504 10302   206 210120.00000000000000 21012 10.00000000000000
10601 10504   105 212100.00000000000000 21210 10.00000000000000
10841 10426   417 216840.00000000000000 21684 10.00000000000000
11175 11043   138 223560.00000000000000 22356 10.00000000000000
14667 14606    73 293460.00000000000000 29346 10.00000000000000
16850 16441   411 337020.00000000000000 33702 10.00000000000000
20602 20402   204 412080.00000000000000 41208 10.00000000000000
20858 20451   409 417180.00000000000000 41718 10.00000000000000
27534 27403   137 550740.00000000000000 55074 10.00000000000000
32885 32481   406 657720.00000000000000 65772 10.00000000000000

I can't tell if there are more beyond this. The program was stopped manually at a=38448 (a being the largest side of the triangle).

  Posted by Charlie on 2024-01-04 08:56:35
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information