Home > Numbers
Area / Perimeter Ratio (Posted on 2024-01-04) |
|
The triangle 5,12,13 has an area A=30 and a perimeter P=30, so A/P is 1. The triangle 9,75,78 has an area A=324 and a perimeter P=162, so A/P is 2. Find the smallest and largest integer-sided triangles where A/P is 10.
? solution, larger found
|
| Comment 3 of 5 |
|
Smallest: [65, 70, 75] P = 210, A = 2100 Largest: [73, 14606, 14667] P = 29,346 and A = 293,460 (at least that I found)
This is a very thin triangle with the smallest angle being about 9.42 minutes of arc.
The smallest of the group will be the closest to equilateral and as they get larger, they get thinner. I tried to find a theoretical maximum area, thinnest possible triangle that would have an A/P ratio of 10, but I did not come to a solid finding. But I did notice some things about the side lengths that made it possible to put more strict constraints on the search parameters. Call the sides x,y,z where x <= y <= z. As the triangles get larger and thinner, y gets larger and also x+y-z gets smaller. The ratio (x+y-z)/y gets very small, e.g. 0.01
---------------------------- Version one: big = 10000 for x in range(1,big): for y in range(x,big): lo = min(1, y-x) hi = x+y for z in range(lo,hi): p = hi + z a = areaHeron(x,y,z) if a/p == 10: tri = sorted([x,y,z]) if [int(a),tri] not in solutions: solutions.append([int(a),tri]) print(sorted(solutions)) ----- Version two squeezing down on the parameters for x,y,z solutions = [] big = 1000000 for x in range(40,90): print(2*x - 80, '%') # to follow progress for y in range(10000,big): lo = x + int(999*y/1000) hi = x+y for z in range(lo,hi): p = hi + z a = areaHeron(x,y,z) if a/p == 10: tri = sorted([x,y,z]) if [int(a),tri] not in solutions: solutions.append([int(a),tri]) print([int(a),tri])
print(sorted(solutions)) print('number of solutions', len(solutions)) ----- -----
Output of version one with "big" variable 10000 AREA SIDES [2100, [65, 70, 75]], [2160, [60, 78, 78]], [2220, [61, 74, 87]], [2280, [57, 82, 89]], [2340, [65, 72, 97]], [2400, [60, 80, 100]], [2520, [56, 90, 106]], [2640, [52, 102, 110]], [2640, [66, 82, 116]], [2700, [75, 75, 120]], [2940, [49, 122, 123]], [3000, [50, 120, 130]], [3060, [53, 117, 136]], [3240, [72, 102, 150]], [3300, [55, 125, 150]], [3360, [48, 140, 148]], [3360, [68, 112, 156]], [3600, [90, 100, 170]], [3720, [62, 136, 174]], [3780, [54, 149, 175]], [3900, [75, 130, 185]], [4200, [50, 175, 195]], [4200, [70, 150, 200]], [4320, [108, 116, 208]], [4500, [45, 200, 205]], [4620, [56, 187, 219]], [4620, [66, 175, 221]], [4680, [74, 169, 225]], [4740, [87, 158, 229]], [4980, [83, 174, 241]], [5280, [44, 240, 244]], [5460, [78, 203, 265]], [5520, [46, 246, 260]], [5640, [47, 250, 267]], [6000, [60, 250, 290]], [6180, [109, 206, 303]], [6240, [52, 272, 300]], [6300, [65, 259, 306]], [6360, [106, 218, 312]], [6600, [165, 170, 325]], [6660, [153, 185, 328]], [6960, [58, 300, 338]], [7020, [51, 312, 339]], [7020, [135, 221, 346]], [7500, [125, 255, 370]], [7740, [43, 362, 369]], [7980, [119, 285, 394]], [8100, [45, 375, 390]], [8160, [68, 348, 400]], [8160, [204, 208, 404]], [8280, [184, 234, 410]], [8580, [169, 264, 425]], [9120, [156, 304, 452]], [9240, [42, 440, 442]], [9240, [110, 357, 457]], [9240, [154, 312, 458]], [9900, [55, 450, 485]], [10080, [144, 364, 500]], [10320, [86, 436, 510]], [10500, [105, 425, 520]], [10620, [59, 481, 522]], [11220, [51, 521, 550]], [11220, [136, 429, 557]], [11340, [42, 543, 549]], [11640, [102, 485, 577]], [11880, [54, 550, 584]], [12120, [101, 510, 601]], [12180, [203, 409, 606]], [12600, [130, 504, 626]], [12900, [129, 520, 641]], [12960, [48, 612, 636]], [13860, [63, 638, 685]], [14280, [42, 689, 697]], [14580, [81, 654, 723]], [14880, [124, 624, 740]], [16080, [402, 404, 802]], [16740, [62, 783, 829]], [17100, [95, 765, 850]], [17220, [41, 840, 841]], [17400, [120, 754, 866]], [18060, [43, 875, 888]], [18060, [303, 602, 901]], [18120, [302, 606, 904]], [18480, [44, 894, 910]], [19560, [163, 818, 975]], [19740, [47, 952, 975]], [19740, [282, 707, 985]], [20340, [117, 904, 1013]], [20460, [93, 935, 1018]], [21060, [78, 981, 1047]], [32040, [801, 802, 1601]] ----- -----
Output of version two testing x from 40 to 89; y 10000 to 1000000; "lo" factor 999/1000 (this misses many smaller triangles, but is looking for the largest
[28140, [67, 1347, 1400]], [30600, [90, 1445, 1525]], [31200, [60, 1508, 1552]], [31920, [76, 1526, 1590]], [37380, [89, 1785, 1864]], [41820, [51, 2050, 2081]], [46920, [46, 2312, 2334]], [60180, [59, 2958, 3001]], [68040, [42, 3375, 3387]], [71340, [87, 3485, 3562]], [75480, [74, 3706, 3768]], [87480, [54, 4329, 4365]], [139320, [86, 6885, 6961]], [293460, [73, 14606, 14667]]
|
Posted by Larry
on 2024-01-04 10:05:16 |
|
|
Please log in:
Forums (0)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|