All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Each of the 9 Words is a Perfect Square (Posted on 2024-01-15) Difficulty: 3 of 5
Each of TSRABVOLUE, RSBAOVTULE, OSBURVLETA, UBOSLRVEAT, VLSOAEBTRU, AUBTOELSRV, BEOVSALRUT, LTOVABERSU, ELTUSBROVA is a perfect square.

Determine the key, knowing that none of the 9 numbers can contain any leading zero.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Computer solution; and a bonus word Comment 2 of 2 |
Letters used:   ABELORSTUV
Last digit of a square can be only [0, 1, 4, 5, 6, 9]
Last letters are AETUV
The first letters cannot be zero, in order:  TROUVABLE  so zero must be S.
Hmm, "trouvable" looks like a word.  It is not in a dictionary that I can find, but introuvable means "impossible to find".  More on this later.  In retrospect we almost had the solution without looking any further.

Five different letters are last in a word and must be in {0,1,4,5,6,9} or actually {1,4,5,6,9} because 0 is already known to be "S".
S = 0
AETUV are in {1,4,5,6,9}
BLOR are in {2,3,7,8}

The last 2 letters are:  ['UE', 'LE', 'TA', 'AT', 'RU', 'RV', 'UT', 'SU', 'VA']
The last 2 digits of squares, eliminating doubles, can be:
['01', '04', '09', '16', '21', '24', '25', '29', '36', '41', '49', '56', '61', '64', '69', '76', '81', '84', '89', '96']
The second to last digit of LTOVABERSU is 0, therefore U is in {1,4,9}
We have UE and UT so {E,T} must be in {6 , 1,9  , 6}
Summary: S=0, U in {1,4,9}, {E,T} in {1,6,9}
We have a word ending in SRV so RV is in {24, 25, 36, 76, 81, 84, 89} given constraints on R.  
These constraints bring down the total number of possibilities from 10! to 156.

The nine numbers and their square roots are:
1026753849 32043.0 
2076351489 45567.0 
3074258916 55446.0 
4730825961 68781.0 
5803697124 76182.0 
6471398025 80445.0 
7935068241 89079.0 
8135679204 90198.0 
9814072356 99066.0

0123456789
STROUVABLE
How about that, the alphametic words were in numeric order.
So the solution was not INTROUVABLE, it waS_TROUVABLE.
From the Latin trouvare or French trouver (to find).
------------
from itertools import permutations
squares = [str(n**2) for n in range(31623, 100000)]

S = '0'
for per in permutations('2378'):
    B = per[0]
    L = per[1]
    O = per[2]
    R = per[3]
    for perm in permutations('14569'):
        V = perm[0]
        if R == '2' and V not in '45':
            continue
        if R in '37' and V != '6':
            continue
        if R == '8' and V not in '149':
            continue
        U = perm[1]
        if U not in '149':
            continue
        E = perm[2]
        if E not in '169':
            continue
        T = perm[3]
        if T not in '169':
            continue
        A = perm[4]

        if T+S+R+A+B+V+O+L+U+E not in squares:
            continue
        if R+S+B+A+O+V+T+U+L+E not in squares:
            continue
        if O+S+B+U+R+V+L+E+T+A not in squares:
            continue
        if U+B+O+S+L+R+V+E+A+T not in squares:
            continue
        if V+L+S+O+A+E+B+T+R+U not in squares:
            continue
        if A+U+B+T+O+E+L+S+R+V not in squares:
            continue
        if B+E+O+V+S+A+L+R+U+T not in squares:
            continue
        if L+T+O+V+A+B+E+R+S+U not in squares:
            continue
        if E+L+T+U+S+B+R+O+V+A not in squares:
            continue
        print('',T+S+R+A+B+V+O+L+U+E, int(T+S+R+A+B+V+O+L+U+E)**.5, '\n',
        R+S+B+A+O+V+T+U+L+E, int(R+S+B+A+O+V+T+U+L+E)**.5, '\n',
        O+S+B+U+R+V+L+E+T+A, int(O+S+B+U+R+V+L+E+T+A)**.5, '\n',
        U+B+O+S+L+R+V+E+A+T, int(U+B+O+S+L+R+V+E+A+T)**.5, '\n',
        V+L+S+O+A+E+B+T+R+U, int(V+L+S+O+A+E+B+T+R+U)**.5, '\n',
        A+U+B+T+O+E+L+S+R+V, int(A+U+B+T+O+E+L+S+R+V)**.5, '\n',
        B+E+O+V+S+A+L+R+U+T, int(B+E+O+V+S+A+L+R+U+T)**.5, '\n',
        L+T+O+V+A+B+E+R+S+U, int(L+T+O+V+A+B+E+R+S+U)**.5, '\n',
        E+L+T+U+S+B+R+O+V+A, int(E+L+T+U+S+B+R+O+V+A)**.5)

  Posted by Larry on 2024-01-15 09:45:34
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (8)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information