Determine the area of the region bound by:
* y= sin x
* y= cos x
* y= tan x
with 0<=x<=π/2
https://www.desmos.com/calculator/0rjas5f9oa
Let A be the x value of the intersection of cos and tan.
(A = asin((√5-1)/2)) or A = asin(φ-1)
Let B be the x value of the intersection of cos and sin. (B = π/4)
We want
I1: integral 0 to B of cos(x) dx
subtract two areas from that:
I2: integral 0 to A of [cos(x) - tan(x)] dx and
I3: integral 0 to B of sin(x) dx
I1 = √2/2
I2 = 0.37742807622
I3 = 0.292893218813
I1 - I2 - I3 = 0.036785486153
|
Posted by Larry
on 2024-01-27 10:27:56 |