All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Probability
The First Lady (Posted on 2024-01-30) Difficulty: 2 of 5
A standard deck of 52 cards contains, inter alia, four Queens.
After a perfect shuffle, one turns cards from the top one after another, until the first Queen appears.

Please provide your justified estimate at what step will the 1st Queen appear.

No Solution Yet Submitted by Ady TZIDON    
Rating: 5.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts computer solution | Comment 3 of 12 |
For the perfect shuffle, the deck is divided into two equal packs. Then the two packs are interleaved. There's a choice as to which pack should supply the odd position cards and the other the even. Call one choice a and the other b; there are 16 possibilities for the sequence of a's and b's.


clearvars,clc
stats=double.empty(0);
for a=['ab']
  for b=['ab']
    for c=['ab']
      for d=['ab']
        seq=[a b c d];
        deck='aaaa22223333444455556666777788889999xxxxjjjjqqqqkkkk';
        for i=1:4
           typ=seq(i);
           p1=deck(1:26);
           p2=deck(27:52);
           if typ=='a'
             deck(1:2:51)=p1;
             deck(2:2:52)=p2;
           else
             deck(1:2:51)=p2;
             deck(2:2:52)=p1;
           end
        end
        f=strfind(deck,'q');
        disp([seq ' ' num2str(f(1))])
        stats(end+1)=f(1);
      end
    end
  end
end
  mean(stats)

finds the place depends on the sequence of types of perfect shuffle after making the cut into two packs:

aaaa 7
aaab 8
aaba 5
aabb 6
abaa 3
abab 4
abba 1
abbb 2
baaa 15
baab 16
baba 13
babb 14
bbaa 11
bbab 12
bbba 9
bbbb 10
ans =
                       8.5
>> 
showing the average is at position 8.5

If, however, the choice of half-pack is consistent (either aaaa or bbbb) the answer will be position 7 or 10 respectively.

The same table as above, showing the positions of all four queens:

aaaa 7
     7    23    39    42
aaab 8
     8    24    40    41
aaba 5
     5    21    37    44
aabb 6
     6    22    38    43
abaa 3
     3    19    35    38
abab 4
     4    20    36    37
abba 1
     1    17    33    40
abbb 2
     2    18    34    39
baaa 15
    15    31    34    50
baab 16
    16    32    33    49
baba 13
    13    29    36    52
babb 14
    14    30    35    51
bbaa 11
    11    27    30    46
bbab 12
    12    28    29    45
bbba 9
     9    25    32    48
bbbb 10
    10    26    31    47
ans =
                       8.5

Edited on January 30, 2024, 9:28 am
  Posted by Charlie on 2024-01-30 09:23:01

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information