All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Neponacci. (Posted on 2024-02-01) Difficulty: 3 of 5

It's like Fibonacci but starting with only one male rabbit, and adding a female in the second month. Rabbits are immortal, and male/female pairs produce one offspring every month. Numbers of males and females are kept equal as far as possible - that is, two pairs of rabbits will produce a male/female pair, and a single pair of rabbits will produce a male, unless an odd male already exists from an earlier month, in which case they will produce a female.

Produce a closed form expression for the number of rabbits after the nth month, and use this to compute the total number of rabbits after 5 years.

No Solution Yet Submitted by broll    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 3
clearvars,clc
n=[1,2];
for gen=2:60
  n(gen+1)=n(gen)+floor(n(gen)/2);
end
d=[0:60;n];
disp(d')

shows

generation             population  
      0                         1
      1                         2
      2                         3
      3                         4
      4                         6
      5                         9
      6                        13
      7                        19
      8                        28
      9                        42
     10                        63
     11                        94
     12                       141
     13                       211
     14                       316
     15                       474
     16                       711
     17                      1066
     18                      1599
     19                      2398
     20                      3597
     21                      5395
     22                      8092
     23                     12138
     24                     18207
     25                     27310
     26                     40965
     27                     61447
     28                     92170
     29                    138255
     30                    207382
     31                    311073
     32                    466609
     33                    699913
     34                   1049869
     35                   1574803
     36                   2362204
     37                   3543306
     38                   5314959
     39                   7972438
     40                  11958657
     41                  17937985
     42                  26906977
     43                  40360465
     44                  60540697
     45                  90811045
     46                 136216567
     47                 204324850
     48                 306487275
     49                 459730912
     50                 689596368
     51                1034394552
     52                1551591828
     53                2327387742
     54                3491081613
     55                5236622419
     56                7854933628
     57               11782400442
     58               17673600663
     59               26510400994
     60               39765601491

Entering

     2     3     4     6     9    13    19    28    42

into the OEIS finds sequence

A061418

which matches as far is it goes (39    7972438).

The only closed-form expression given by OEIS is

ceil(k*(3/2)^n) where k = 1.08151366859...

where k is defined as (2/3) * K(3), and the value of K(3) is given to 10,000 places at 


so is not realy, truly closed form, if this has to be computed. Of course you could say the same about any closed-form expression involving pi or e, but K(3) is not as well-known as pi or e.


k = 1.08151366859;
n = 60;
ceil(k*(3/2)^n)

does in fact yield

ans =
               39765601491

Edited on February 1, 2024, 9:22 pm
  Posted by Charlie on 2024-02-01 13:30:52

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information