All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes
Row of towers (Posted on 2024-02-23) Difficulty: 3 of 5
An assemblage of unit squares is in the form of n towers with heights 1,2,...,n forming a polyomino.

Here are two possible examples for n=4:

Find a formula for the largest possible perimeter of such a polyomino.

No Solution Yet Submitted by Jer    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer-aided solution | Comment 1 of 5
The program counts

  • 2*n for the horizontal sections of the perimeter (top and bottom).
  • sum of first and last, for the left and right edges.
  • sum of the differences between adjacent towers for the remaining vertical sections.

clearvars,clc
b=[];
for n=1:11
  orders=perms(1:n);
  best=0; bestOrder=[];
  for i=1:length(orders)
    order=orders(i,:);
    peri=2*n+order(1)+order(end) ...
         +sum(abs(order(1:end-1)-order(2:end)));
    if peri>best
      best=peri;
      bestOrder=order;
    end
  end
  b(end+1)=best;
  fprintf('%2d %3d\n',n,best)
  fprintf('%3d ',bestOrder)
  fprintf('\n\n')
end
b


shows for n = 1 to 11,

first row: n and the highest perimeter,
second row: the sequence of heights of the towers to get that perimeter. (There may be others -- certainly the reverse of each).

 1   4
  1 

 2   8
  2   1 

 3  14
  3   1   2 

 4  20
  4   2   1   3 

 5  28
  5   2   4   1   3 

 6  36
  6   3   2   5   1   4 

 7  46
  7   3   6   2   5   1   4 

 8  56
  8   4   3   7   2   6   1   5 

 9  68
  9   4   8   3   7   2   6   1   5 

10  80
 10   5   4   9   3   8   2   7   1   6 

11  94
 11   5  10   4   9   3   8   2   7   1   6 

b =
     4     8    14    20    28    36    46    56    68    80    94


The bottom line summarizes all eleven maximum perimeters, so I could paste the list into the OEIS. That led to sequence A265284,

The Formula section of A265284 lists conjectured formulae as:

a(n) = (2*n^2+12*n-(-1)^n+1)/4 for n>0.
a(n) = (n^2+6*n)/2 for n>1 and even.
a(n) = (n^2+6*n+1)/2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4.
G.f.: (1+2*x-x^4) / ((1-x)^3*(1+x)).

The two that apply only to odd or even could be combined into

 ceil((n^2+6*n)/2)
 
and serve as the best answer to this puzzle. 

  Posted by Charlie on 2024-02-23 13:01:43
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information