All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Some Sum of 2 Powers is a Perfect Square (Posted on 2024-02-26) Difficulty: 3 of 5
Suppose 22022 - 31*22014 + 2n is a perfect square for a certain positive integer value of n.

Find the value of n.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 2
clearvars,clc
s=sym(2)^2022-31*sym(2)^2014;
for n=1:10000
  sq=s+sym(2)^n;
  sr=round(sqrt(sq));
  if sr^2==sq
    disp(n)
    disp(sq)
    disp(sr)
    disp(' ')
  end
end

finds

The answer is n = 2020.

The perfect square is

54363712869869085901338836195794959299780577837651216455768268954443194293026000
19223750107880985591913363599862454300533165545548831506280973830749096554833151
35559483314158308541352736217054705139055003702845845371074461594521389969811382
69298321485973985698298156246278140651151584570107414872308819795818028752398759
53970231324034578376789585125442948953175675406723485017759779436182457386011570
77773633284826150317413079106826537929892986219648074488179991593621631786310290
95329404822545377261021274018600872867410235882332513671173040561687006541702268
3018419204940771596566792393054977754226518654976

Its square root is

23316027292373176903837729067545639397816168702712411297976008450938838872478610
02545199672302954187285646008268595647491607228141666475358870244080254409877336
16194780175266242762583406157196047264283003650291295642743041978597182087442236
26663688902106923535445915756829095313676110665757759533718962176


  Posted by Charlie on 2024-02-26 10:11:54
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information