All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Pythagorean Triples #3 (Posted on 2024-02-28) Difficulty: 4 of 5
Find two Pythagorean right triples A,B,C and D,E,F such that A=D and B=F, where C and F are the length of the two hypotenuses, with A ≤ B < C and, D ≤ E < F

If that is impossible, then find a pair such that A=D and abs(B-F) is minimum.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts computer exploration | Comment 1 of 2
clearvars,clc
pyth=double.empty(0,3);
for t=2:100
  for a=1:t-1
    d=a;
    b=t-a;
    for f=b-1:b+1
      c=sqrt(a^2+b^2);
      if c==floor(c) && isreal(c)
        e=sqrt(f^2-d^2);
        if e==floor(e) && isreal(e) && e>0 ...
            && ~isequal([a,b,c],[d,e,f])
          disp([a,b,c])
          disp([d,e,f])
          disp(f-b)
        end
      end
    end
  end
end

finds these pairs of triples in which B differs from F by only 1:

    12    16    20
    12     9    15
    -1
    21    28    35
    21    20    29
     1
    40    42    58
    40     9    41
    -1
    33    56    65
    33    44    55
    -1
    
Even when the total A + B was allowed to go to 25,000, it found no cases of zero difference between B and F.    

  Posted by Charlie on 2024-02-28 13:58:55
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information