All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Power Digits (Posted on 2024-03-15) Difficulty: 4 of 5
Let N=d1d2d3...dn be an n-digit decimal number, with n>1.

Form the sum:
S(N) = d1n + d2n+ d3n + ... + dnn

Prove that there are only a finite number of integers N for which S(N)=N.

For an extra credit, find these values of N.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
different algorithm to find the numbers | Comment 4 of 6 |
(In reply to Some numbers but without a proof by Larry)

This version of the algorithm checks only sets of digits in numeric order, rather than all numbers in a range; it then takes the sum of the powers of the digits and sees if the sorted digits of the answer match the tested set.

This compensates for the slowness of Matlab as a language, but has the effect of finding the numbers in an order different from their numerical value, as it's the order of their sorted digits.

It was done for n=3 through n=11 and holds the answer set in an array that's shown sorted at the end.

answerSet=[];
for n=3:11
  idx=combinator(9+n,9,'c');
  for i=1:length(idx)
    c=[0 idx(i,:) 10+n];
    c2=c(2:end)-c(1:end-1 )-1;
    ix=find(c2) ;
    digs='';
    for j=1:length(ix)
      digs=[digs repmat(num2str(ix(j)-1),1,c2(ix(j)))];
    end
    if isequal(digs,'135')
      xx=9;
    end
    dign=[];
    for j=1:length(ix)
      dign=[dign repmat( ix(j)-1,1,c2(ix(j)))];
    end    
    v=sort(num2str(sum(dign.^n)));
    if isequal(v,digs)
      disp(sum(dign.^n));
      answerSet(end+1)=sum(dign.^n);
    end
  end
end
disp(' ')
answerSet=sort(answerSet);
fprintf('%12d\n',answerSet);




>> powerDigits
         371
         153
         407
         370
        9474
        1634
        8208
       54748
       92727
       93084
      548834
     9926315
     1741725
     4210818
     9800817
    88593477
    24678051
    24678050
   534494836
   472335975
   912985153
   146511208
  4679307774
 82693916578
 44708635679
 94204591914
 32164049651
 49388550606
 42678290603
 40028394225
 32164049650
 
         153
         370
         371
         407
        1634
        8208
        9474
       54748
       92727
       93084
      548834
     1741725
     4210818
     9800817
     9926315
    24678050
    24678051
    88593477
   146511208
   472335975
   534494836
   912985153
  4679307774
 32164049650
 32164049651
 40028394225
 42678290603
 44708635679
 49388550606
 82693916578
 94204591914


  Posted by Charlie on 2024-03-16 08:13:30
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information