2^1-1=1
(2^1-1)+(3^2-1)=1+8=9
(2^1-1)+(3^2-1)+(4^3-1)=1+8+63=72
(2^1-1)+(3^2-1)+(4^3-1)+(5^4-1)=1+8+63+624=696
(2^1-1)+(3^2-1)+(4^3-1)+(5^4-1)+(6^5-1)=1+8+63+624+7775=8471
(2^1-1)+(3^2-1)+(4^3-1)+(5^4-1)+(6^5-1)+(7^6-1)=1+8+63+624+7775+117648=126119
(2^1-1)+(3^2-1)+(4^3-1)+(5^4-1)+(6^5-1)+(7^6-1)+(8^7-1)=1+8+63+624+7775+117648+2097151=2223270
(2^1-1)+(3^2-1)+(4^3-1)+(5^4-1)+(6^5-1)+(7^6-1)+(8^7-1)+(9^8-1)=1+8+63+624+7775+117648+2097151+43046720=45269990
(2^1-1)+(3^2-1)+(4^3-1)+(5^4-1)+(6^5-1)+(7^6-1)+(8^7-1)+(9^8-1)+(10^9-1)=1+8+63+624+7775+117648+2097151+43046720+999999999=1045269989
(2^1-1)+(3^2-1)+(4^3-1)+(5^4-1)+(6^5-1)+(7^6-1)+(8^7-1)+(9^8-1)+(10^9-1)+(11^10-1)=1+8+63+624+7775+117648+2097151+43046720+999999999+25937424600=26982694589
(2^1-1)+(3^2-1)+(4^3-1)+(5^4-1)+(6^5-1)+(7^6-1)+(8^7-1)+(9^8-1)+(10^9-1)+(11^10-1)+(12^11-1)=1+8+63+624+7775+117648+2097151+43046720+999999999+25937424600+743008370687=769991065276
(2^1-1)+(3^2-1)+(4^3-1)+(5^4-1)+(6^5-1)+(7^6-1)+(8^7-1)+(9^8-1)+(10^9-1)+(11^10-1)+(12^11-1)+(13^12-1)=1+8+63+624+7775+117648+2097151+43046720+999999999+25937424600+743008370687+23298085122480=24068076187756
...
Therefore, the next number is 24068076187756. The giveaway was 45269990 and 1045269989, which differ by 10^9-1=999999999.
Edited on April 1, 2024, 5:42 pm
|
Posted by Math Man
on 2024-04-01 12:54:22 |