All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Numbers and their inversions (Posted on 2024-05-23) Difficulty: 3 of 5
We will be dealing with two-digit numbers non divisible by 11.
For each such number A there will exist another A’, a number created by inverting the digits of A so 45’=54, 87’=78.
Take for example 2 numbers 36 & 84: their product is the same as the product of those numbers inverted i.e. 63*48.

Find all the couples possessing such feature i.e. AB=(A')*(B').
Rem: to preserve conformity present the smallest number on the LHS of the equation - like 12*42=21*24.

See The Solution Submitted by Ady TZIDON    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 5
clearvars,clc
pairs= double.empty(0,2);
for n1=10:99
  n2=floor(n1/10)+10*mod(n1,10);
  p=n1*n2;
  if p>0 && n2>9 && n2~=n1
    % disp([n1 n2])
    pairs(end+1,:)=[n1 n2];
  end
end

for i=1:length(pairs)
  for j=1:length(pairs)
    if i~=j && pairs(j,1) ~= pairs(i,2)
      if pairs(i,1)==min([pairs(i,1),pairs(j,1) , pairs(i,2),pairs(j,2)])
        if pairs(i,1)*pairs(j,1) == pairs(i,2)*pairs(j,2)
          fprintf('%3d *%3d =%3d *%3d =%5d\n', pairs(i,1),pairs(j,1),pairs(i,2),pairs(j,2),pairs(i,2)*pairs(j,2))
        end
      end
    end
  end
end

 12 * 42 = 21 * 24 =  504
 12 * 63 = 21 * 36 =  756
 12 * 84 = 21 * 48 = 1008
 13 * 62 = 31 * 26 =  806
 13 * 93 = 31 * 39 = 1209
 14 * 82 = 41 * 28 = 1148
 23 * 64 = 32 * 46 = 1472
 23 * 96 = 32 * 69 = 2208
 24 * 63 = 42 * 36 = 1512
 24 * 84 = 42 * 48 = 2016
 26 * 93 = 62 * 39 = 2418
 34 * 86 = 43 * 68 = 2924
 36 * 84 = 63 * 48 = 3024
 46 * 96 = 64 * 69 = 4416



  Posted by Charlie on 2024-05-23 23:18:04
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information