All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
Point relation in a square (Posted on 2024-06-20) Difficulty: 3 of 5
In square ABCD, we select a point P such that AP=a, BP=2a, CP=3a. Find ∠APB?

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 1 of 3
Let

A=(0,0)
B=(1,0)
C=(1,1)
D=(0,1)

P=(x,y)

a=sqrt(x^2+y^2)

sqrt((x-1)^2 + y^2) = 2*sqrt(x^2+y^2)
sqrt((x-1)^2 + (y-1)^2) = 3*sqrt(x^2+y^2)

(x-1)^2 + y^2 = 4(x^2+y^2)
(x-1)^2 + (y-1)^2 = 9(x^2+y^2)

(x-1)^2 + y^2 = 4(x^2+y^2), 
(x-1)^2 + (y-1)^2 = 9(x^2+y^2)

Using Wolfram Alpha to solve  this:

x = (1/17)*(1 + 3*sqrt(2)) 
y = (1/17)*(5*sqrt(2) - 4)


Program using different meanings of a and b:


x = (1/17)*(1 + 3*sqrt(2))    % of point P
y = (1/17)*(5*sqrt(2) - 4)

b=norm([x,y]);  % opposite point B in small triangle APB
a=2*b;          % opposite point A in small triangle APB
c=1;     % length of AB

% c^2 = a^2 + b^2 - 2*a*b*cos(APB)
% cos(APB) = (a^2 + b^2 - c^2) / (2*a*b)

APB=acosd((a^2 + b^2 - c^2) / (2*a*b))

finds

x =
         0.308390628654076
y =
         0.180651047756793
APB =
                       135
                       
Angle APB = 135°                       

  Posted by Charlie on 2024-06-20 12:28:29
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information