All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Probability
Cubic Lattice (Posted on 2024-07-03) Difficulty: 3 of 5
In an infinite cubic lattice with points separated in x, y and z axis by one unit, a random walk starts from (0, 0, 0). Any of the 6 possible directions is equally likely at each step.

What is the probability of a return to the origin after 2*N moves?

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
expanded table using OEIS | Comment 2 of 3 |
(In reply to solution by Charlie)

 accum=0;
 for i=2:2:22
   hits=A002896(i/2);
   tot=6^i;
   accum = accum+hits /tot  ;
   fprintf('%3d %15d %18d %15.13f %15.13f\n',i,hits ,tot ,hits /tot ,accum);
 end 
 
 function a=A002896(x)
 n=x; 
   s=0;
   for k=0:n
     s=s+nchoosek(n,k)^2 * nchoosek(2*k,k);
   end
   a=nchoosek(2*n,n)*s ; 
 end

                                                                 cumulative
  2*n          numerator         denominator        probability   probability
 
   2                       6                 36 0.1666666666667 0.1666666666667
   4                      90               1296 0.0694444444444 0.2361111111111
   6                    1860              46656 0.0398662551440 0.2759773662551
   8                   44730            1679616 0.0266310871056 0.3026084533608
  10                 1172556           60466176 0.0193919324417 0.3220003858025
  12                32496156         2176782336 0.0149285279757 0.3369289137782
  14               936369720        78364164096 0.0119489530808 0.3488778668590
  16             27770358330      2821109907456 0.0098437704453 0.3587216373043
  18            842090474940    101559956668416 0.0082915600062 0.3670131973105
  20          25989269017140   3656158440062976 0.0071083541491 0.3741215514596
  22         813689707488840 131621703842267136 0.0061820329303 0.3803035843898

  Posted by Charlie on 2024-07-04 08:14:52
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information