All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes
The Folding Ruler #2 (Posted on 2024-07-08) Difficulty: 3 of 5
Alex owns one of those folding rulers where each segment is exactly 1 foot long. While playing with the open ruler he formed it into a triangle. Then he refolded it into a second triangle with double the area. Next he refolded it into a third triangle with triple the area.

What is the smallest possible length of the ruler?

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 1 of 2
From the fact this is considered different from merely taking the larger of the two lengths found in the original puzzle, I conclude that it's not considered proper to double over one pair of segments so as to hide one unit. We want the perimeters of all the triangles to be equal.

The program stores all the triangles for all sizes up to 40 and compares areas, making sure the same perimeters for both sizes:

clearvars,clc
tri=double.empty(0,3);
area=[];
for tot=3:40
  for a=1:tot/3
    for b=a:(tot-a)/2
      c=tot-a-b;
      if c<a+b
        s=sum([a b c])/2;
        A =sqrt(s*(s-a)*(s-b)*(s-c));
        % if isreal(A) && A>0 && c>0
        area(end+1)=A;
        tri(end+1,:)=[a b c];
        % end
      end
    end
  end
end

for a=1:length(tri)
  for b=1:length(tri)
    if area(b)==2*area(a)  && sum(tri(a,:))==sum(tri(b,:))
      fprintf('%19.15f %19.15f    %3d %3d %3d %3d %3d %3d   %4d\n', ...
        [area(a) area(b) tri(a,:) tri(b,:) max([sum(tri(a,:)) sum(tri(b,:))])])
    end
  end
end

disp(' ')

for a=1:length(tri)
  for b=1:length(tri)
    if area(b)==3*area(a)   && sum(tri(a,:))==sum(tri(b,:))
      fprintf('%19.15f %19.15f    %3d %3d %3d %3d %3d %3d   %4d\n', ...
        [area(a) area(b) tri(a,:) tri(b,:) max([sum(tri(a,:)) sum(tri(b,:))])])
    end
  end
end

         Area            Double                orig       double     perimeter

  8.944271909999159  17.888543819998318      2   9   9   6   6   8     20
  9.949874371066199  19.899748742132399      2  10  10   5   8   9     22
 16.124515496597098  32.249030993194197      3  11  12   8   9   9     26
 18.973665961010276  37.947331922020552      3  13  14   7  11  12     30
 14.966629547095765  29.933259094191531      2  15  15   8   9  15     32
 24.000000000000000  48.000000000000000      4  13  15  10  10  12     32
 15.968719422671311  31.937438845342623      2  16  16   7  11  16     34
 21.817424229271428  43.634848458542855      3  15  16   9  10  15     34
 23.237900077244500  46.475800154489001      3  16  17   8  12  16     36
 27.495454169735041  54.990908339470082      4  15  17  10  11  15     36
 29.240383034426891  58.480766068853782      4  16  18   9  13  16     38
 33.763886032268267  67.527772064536535      4  17  17  11  13  14     38
 32.619012860600179  65.238025721200358      5  15  18  11  12  15     38
 30.983866769659336  61.967733539318672      4  17  19   8  16  16     40
 35.777087639996637  71.554175279993274      4  18  18  12  12  16     40
 34.641016151377549  69.282032302755098      5  16  19  10  14  16     40
 37.416573867739416  74.833147735478832      6  15  19  12  13  15     40
 
         Area            Triple                orig       double     perimeter
  
 11.659223816361019  34.977671449083054      2  13  14   7  10  12     29
 14.966629547095765  44.899888641287298      2  15  15   9  10  13     32
 16.686446595965240  50.059339787895723      3  14  16   9  12  12     33
  8.996527107723290  26.989581323169872      1  18  18   8  11  18     37
 15.998046755776157  47.994140267328468      2  18  19   6  16  17     39
 15.998046755776157  47.994140267328468      2  18  19   9  12  18     39
 18.973665961010276  56.920997883030829      2  19  19  11  11  18     40

The shortest ruler for doing both doubling and tripling is the 32-foot model, which can double or triple the area of an original 2-15-15 triangle, by making an 8-9-15 triangle and a 9-10-13 triangle respectively.


  Posted by Charlie on 2024-07-08 08:03:52
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information