All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Divisibility of 8 (Posted on 2024-07-20) Difficulty: 3 of 5
In how many ways can 8 different numbers can be chosen from the first 49 positive integers such that the product of these numbers is divisible by 8?

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 1 of 2
Only even numbers can contribute factors of 2 into the final product. The even numbers between 1 and 49 are listed with the number of 2's contributed as factors:

     2     1
     4     2
     6     1
     8     3
    10     1
    12     2
    14     1
    16     4
    18     1
    20     2
    22     1
    24     3
    26     1
    28     2
    30     1
    32     5
    34     1
    36     2
    38     1
    40     3
    42     1
    44     2
    46     1
    48     4
    
Of the 8 chosen numbers, some can be odd and some can be even.

For example, in the table below, for 1 odd and 7 even, there are 25 choices of odd number and 346104 choices of the 7 even numbers. All 346104 choices of even number work, as any 3 would work by themselves. Combining the choices of the even number and the odd numbers, there are 8652600 ways altogether that include 1 odd and 7 even numbers.

Only when we get down to, say, 6 odd numbers and 2 even numbers, do the "ways that work" differ than the overall choices for even number, where only 210 of the 276 possible combinations of 2 even numbers work to produce a multiple of 8.
 
   number of         choices    choices   even choices      total
odd       even       for odd    for even     that          ways that
numbers   numbers    numbers    numbers      work            work
    
 0          8              1     735471     735471          735471
 1          7             25     346104     346104         8652600
 2          6            300     134596     134596        40378800
 3          5           2300      42504      42504        97759200
 4          4          12650      10626      10626       134418900
 5          3          53130       2024       2024       107535120
 6          2         177100        276        210        37191000
 7          1         480700         24          6         2884200
 8          0        1081575          1          0               0
 
 
 
The sum of all the total ways of getting a multiple of 8 is 429,555,291.
    
Compare that with the C(49,8) = 450978066 ways of choosing the 8 numbers altogether and the probability that the product will be a multiple of 8 is 0.952497079979938, or about 95.25%.

For verification:

ct=0;
for trial=1:1000000
  n=randperm(49,8);
  p=prod(n);
  if mod(p,8)==0
    ct=ct+1;
  end
end
ct/trial

finds

0.952516 as that probability via simulation.



The two tables were produced by:
   
clearvars
ct=0; cList=[]; nList=[];
for n=1:49
  f=factor(n);
  s=sum(f==2);
  if s>0
    disp([n s])
    ct=ct+1;
    cList(end+1)=n;
    nList(end+1)=s;
  end
end
ct
ct=0;
idx=combinator(length(nList),8,'c');
for i=1:length(idx)
  row=nList(idx(i,:));
  if sum(row)>=3
    ct=ct+1;
  end
end

ways=0; totnon=49-length(nList);
for non=0:8
  w=nchoosek(totnon,non);
  w2=0;
  idx=combinator(length(nList),8-non,'c');
  for i=1:length(idx)
    row=nList(idx(i,:));
    if sum(row)>=3
      w2=w2+1;
    end
  end
  fprintf('%2d %2d %10d %10d %10d %10d\n',non,8-non,w,nchoosek(24,8-non),w2,w*w2)
  ways=ways+w*w2;
end
num2sepstr(ways)
    

  Posted by Charlie on 2024-07-20 10:25:31
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information