All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
99 numbers in three lists (Posted on 2024-09-27) Difficulty: 3 of 5
List 1: Write down the numbers 1 to 99

1, 2, 3, 4, 5, 6, 7, 8, 9, ..., 99

List 2: Take every successive set of three numbers (3k-2, 3k-1, 3k) for k=(1...33) and randomly apply a permutation to the trio. Example:

3, 1, 2, 4, 5, 6, 7, 9, 8, ..., 98

List 3: Multiply the first numbers, second numbers, etc of lists 1 and 2. Example:

3, 2, 6, 16, 25, 36, 49, 72, 72, ..., 9702

What is the expected sum of the values in list 3?

No Solution Yet Submitted by Jer    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer-aided solution | Comment 1 of 5
The answer is 328,284.

The expected sum for each trio is

  trios 1 through 9
    12    75   192   363   588   867  1200  1587  2028
    
  trios 10 through 18
  2523  3072  3675  4332  5043  5808  6627  7500  8427
  
  trios 19 through 27
  9408 10443 11532 12675 13872 15123 16428 17787 19200
  
  trios 28 through 33
 20667 22188 23763 25392 27075 28812
 
These add up to 328,284.
 
For example, the third trio (7, 8, 9 in list 1) has:

                  list 3     
  permutation  member values  total
  
   9   8   7    63  64  63     190
   9   7   8    63  56  72     191
   8   9   7    56  72  63     191
   8   7   9    56  56  81     193
   7   9   8    49  72  72     193
   7   8   9    49  64  81     194

and the totals average 192 as listed in the list of expected values for each trio.


trioAvg=[];

for k=1:33
  set1=[3*k-2,3*k-1,3*k];
  sets=perms(set1);
  setTot=[];
  for i=1:length(sets)
    set2=sets(i,:);
    set3=set1.*set2;
    setTot(end+1)=sum(set3);
  end
  trioAvg(end+1)=mean(setTot);
end
sum(trioAvg)

  Posted by Charlie on 2024-09-27 08:57:23
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information