All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Powers of 5 (Posted on 2024-10-05) Difficulty: 3 of 5
Call a positive integer totally odd if all of its decimal digits are odd.

Show that for any positive integer k there is a k-digit totally odd integer which is a multiple of 5k.

*** Adapted from a problem which appeared at the USA Mathematical Olympiad in 2003.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts no proof, but a pattern in the first 16 products | Comment 1 of 4
There's a definite pattern to the products:

exponent
of 5        power   multiplier    product
 1                5     1                5
 2               25     3               75
 3              125     3              375
 4              625    15             9375
 5             3125    19            59375
 6            15625    23           359375
 7            78125    43          3359375
 8           390625   239         93359375
 9          1953125    99        193359375
10          9765625   327       3193359375
11         48828125  1499      73193359375
12        244140625  3167     773193359375
13       1220703125  3091    3773193359375
14       6103515625 12087   73773193359375
15      30517578125 25355  773773193359375
16     152587890625 37839 5773773193359375

After k=16 the switch to scientific notation caused by the limits of double-precision floating point resulted in an endless loop:


for k=1:21
  p=5^k ;
  lowMult=ceil(10^(k-1)/p);
  for mult=lowMult:lowMult*10
    ns=num2str(mult*p);
    if isempty(setdiff(ns,'13579'))
      fprintf('%2d %16d %5d %16d\n',k,p,mult,mult*p)
      break
    end
  end
end


  Posted by Charlie on 2024-10-06 09:04:59
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information