All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Powers of 5 (Posted on 2024-10-05) Difficulty: 3 of 5
Call a positive integer totally odd if all of its decimal digits are odd.

Show that for any positive integer k there is a k-digit totally odd integer which is a multiple of 5k.

*** Adapted from a problem which appeared at the USA Mathematical Olympiad in 2003.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
limited solutions Comment 4 of 4 |
In addition to 5, 3 works. I.e., 
For any positive integer k there is a k-digit totally odd integer which is a multiple of 3^k.  

k = 1,2,3,4 results are shown:
 
 k    coefficient     3^k            Totally odd
-------------------------------------------------
 1      1             3                  3
 1      3             3                  9
 2     11             9                 99
 3      5            27                135
 3     13            27                351
 3     19            27                513
 3     37            27                999
 4     17            81               1377
 4     19            81               1539
 4     39            81               3159
 4     71            81               5751
 4     73            81               5913
 4     91            81               7371
 4     93            81               7533
 4    113            81               9153
 4    115            81               9315 

I note that these are _not_ in the form of the 5^k results. 
In all the 5^k examples, an odd digit is appended on the left 
as the new most significant digit to make a k-length odd number. 
This is very nicely motivated by Brian Smith's inductive proof. 

The "append method"  does not work for the 3^k case, however. 
For example, there is no "complimentary residual" to be found from
10, 30, 50, 70, or 90 mod 9 to advance from N=3 (or N=9) 
to go from  k=1 to k=2.

So, a different proof would be needed for the 3^k case.

It is interesting to note that the appended odd numbers in the 
5^k case are the _only_ solutions, whereas for the 3^k case, 
there are multiple solutions, as shown above.

Past 5^k, there are no solutions adhering to the k-digit requirement 
(that Larry's conjecture ignores) E.g., there are no 2 digit totally odd
numbers that are a multiple of 7^2. (49, 98 being the only available
possibilities) 

Edited on October 17, 2024, 11:52 pm
  Posted by Steven Lord on 2024-10-17 12:35:48

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (16)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information