All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Perfect roots (Posted on 2024-10-28) Difficulty: 2 of 5
Find the smallest positive integer n, such that (5n)1/5, (6n)1/6, (7n)1/7 are integers.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 1 of 2
The power of 5 must be:
1 less than a multiple of 5
a multiple of 42

The power of 6 must be
1 less than a multiple of 6
a multiple of 35

The power of 7 must be
1 less than a multiple of 7
a multiple of 30

To get these, the program:

for p5=42:42:999999
  if mod(p5,5)==4
    break
  end
end

for p6=35:35:999999
  if mod(p6,6)==5
    break
  end
end


for p7=30:30:999999
  if mod(p7,7)==6
    break
  end
end

disp([p5,p6,p7])

disp([5^p5*6^p6*7^p7])

disp([sym(5)^p5*sym(6)^p6*sym(7)^p7])

shows the answer is

   5^84 * 6^35 * 7^90
   
which is approximately the 163-digit number

1.01764834100024e+162

or exactly

1017648341000237270320329897336206925241596548387237973988224804540893494763882467
   375145452669116252764069940894842147827148437500000000000000000000000000000000000
   
   
Verification:   
   
>> a=sym(5)^p5*sym(6)^p6*sym(7)^p7
a =
1017648341000237270320329897336206925241596548387237973988224804540893494763882467
375145452669116252764069940894842147827148437500000000000000000000000000000000000
>> vpa(5*a)^(1/5)
ans =
347787161975600777636718750000000.0
>> vpa(6*a)^(1/6)
ans =
1351942320604862109375000000.0
>> vpa(7*a)^(1/7)
ans =
183937730694539062500000.0
>>    


  Posted by Charlie on 2024-10-28 08:28:13
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information