All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Duplicate Digit Determination #5 (Posted on 2024-11-21) Difficulty: 3 of 5
(I) Each of x and y is a positive integer with x < y such that, reading from left to right, the first four digits in the base ten expansions of 1978x and 1978y are congruent.

Determine the minimum value of x+y.

(II) What is the minimum value of x+y - if, keeping all the other conditions in (i) unaltered, the first five digits in the respective base ten expansions of 1978x and 1978y are congruent?

Note: None of the expansions of 1978x and 1978y can contain any leading zero

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution Comment 1 of 1
Part 1:

clearvars,clc
l1978=log10(1978);
for x=1:1000
  lx=x*l1978;
  mantx=lx-floor(lx);
  digsx=floor(1000*10^mantx);
  for y=x+1:1001
    ly=y*l1978;
    manty=ly-floor(ly);
    digsy=floor(1000*10^manty);
    if digsx==digsy
      disp([x,y,x+y,digsy])
    end
  end
end

finds
           x          y          x+y      first 4 digits
           
           1         531         532        1977
           4         534         538        1530
           5         535         540        3027
           7         537         544        1184
           9         539         548        4634
          11         541         552        1813
          12         542         554        3586
          14         544         558        1403
          15         545         560        2775
          21         551         572        1662
          24         554         578        1286
          25         555         580        2544
          28         558         586        1969
          32         562         594        3014
          34         564         598        1179
          36         566         602        4614
          38         568         606        1805
          41         571         612        1397
          42         572         614        2763
          44         574         618        1081
          45         575         620        2138
          46         576         622        4230
          51         581         632        1280
          52         582         634        2533
          53         583         636        5011
          55         585         640        1960
          58         588         646        1517
          
The first is obviously spurious due to a rounding error. The second is legitimate, and is the real first occurrence: (x, y) = (4, 534) for a total of 538, where the first four digits are 1530.

Part 2:

The corresponding result for the second part is

          x          y         x+y      first 5 digits
          2       14815       14817       39124
          
the total x+y being 14817.

1978^2 = 3912484

1978^14815 = 3.912422... * 10^48833

  Posted by Charlie on 2024-11-21 11:06:21
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information