All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes
Spiral Construction (Posted on 2024-12-05) Difficulty: 3 of 5
Construct a spiral by starting at the origin of a coordinate system, moving 1 unit to the right to the point (1, 0), then turning left 45 degrees and moving ½ unit, then turning left 45 degrees and moving ⅓ unit, turning left 45 degrees and moving ¼ unit, etc.

What are the (x, y) coordinates of the limiting point of this spiral?

No Solution Yet Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts Spreadsheet with far fewer iterations | Comment 2 of 7 |
Start by going through 8 steps considering the x-coordinates and y-coordinates separately.

Magnitude  x             y
1          1             0
1/2       √2/4          √2/4
1/3        0             1/3
1/4       -√2/8        √2/8
1/5        -1/5           0
1/6        -√2/12       -√2/12
1/7       0             -1/7
1/8        √2/16        -√2/16
-----     ------         -------
761/280   (4/5)+(5/48)√2   (4/21)+(11/48)√2
2.71785714285714  0.947313912747197  0.514566798520025

Next, I put this into a spreadsheet and copied the formulae to a total of 400 rows.  The sums of the rows were:
6.56992969117651 1.02086340458863 0.64095002132588

Or 800 rows:
7.26245226236115 1.02149402265578 0.642453207060422

Since the series 1/n does not converge, I expect the spiral keeps  moving up and to the right
So, the (x, y) coordinates of the limiting point of this spiral are close to :  (1.02149402265578, 0.642453207060422)

Compare the result of 400 iterations 
to Charlie's result after 400,000,000 iterations:
4*10^2:  (1.0208634, 0.6409500)
4*10^8:  (1.0221209, 0.6439602)

  Posted by Larry on 2024-12-05 09:02:02
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information