let a-b = 1
a^3 - b^3 = (a-b)(a^2 + ab + b^2) = 181^2
(a^2 + ab + b^2) = 181^2
(a^2 + a(a-1) + (a-1)^2) = 181^2
(a^2 + a^2 - a + a^2 - 2a + 1) = 181^2
(3a^2 - 3a + 1) = 181^2
3a^2 - 3a + (1-181^2) = 0
3a^2 - 3a - (180)(182) = 0
a^2 - a - (60)(182) = 0
a = {+105 or -104}, but we need positive, so
a = 105
b = a-1 = 104
a+b = 209
check:
105^3 - 104^3 = 32761
181^2 = 32761
|
Posted by Larry
on 2024-12-05 16:09:14 |