All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Probability
Total Point Probability (Posted on 2024-12-08) Difficulty: 3 of 5
In a certain British soccer pool, the objective is to pick games that end in a tie. The ticket buyer picks 8 games from a list of 45 or more. For each of these games,

if the teams tie, the player gets 3 points, if the visiting team wins, they get 2 points, and if the home team wins, they get 1.5 points. The entry with the highest point total wins.

Assume that for each game, the probability of the home team’s winning is 0.5, the probability of the visiting team’s winning is 0.4, and the probability of a tie is 0.1.

Determine the probability that the total points for an entry will be 22 or higher.

No Solution Yet Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer-aided solution | Comment 1 of 2
clearvars,clc
p=sym(zeros(1,48));
p(3)=1/2;p(4)=2/5;p(6)=1/10;
for game=2:8
  newp=sym(zeros(1,48));
  for pPos=1:48
    if p(pPos)>0
      newp(pPos+3)=newp(pPos+3)+p(pPos)/2;
      newp(pPos+4)=newp(pPos+4)+p(pPos)*2/5;      
      newp(pPos+6)=newp(pPos+6)+p(pPos)/10;
    end
  end
  p=newp;
end

for i=1:length(p)
  if p(i)>0
    fprintf('%3.1f %16s %10.8f\n',i/2,p(i),eval(p(i)))
  end
end
fprintf('%s %10.8f\n',sum(p(44:48)),eval(sum(p(44:48))))

finds the probabilities of each possible total:

total                 approximate
 pts.     probability   decimal
12.0            1/256 0.00390625
12.5             1/40 0.02500000
13.0            7/100 0.07000000
13.5         473/4000 0.11825000
14.0         147/1000 0.14700000
14.5         973/6250 0.15568000
15.0   145047/1000000 0.14504700
15.5     73221/625000 0.11715360
16.0   133849/1562500 0.08566336
16.5   145047/2500000 0.05801880
17.0   109971/3125000 0.03519072
17.5       1547/78125 0.01980160
18.0  527219/50000000 0.01054438
18.5       623/125000 0.00498400
19.0     3521/1562500 0.00225344
19.5       483/500000 0.00096600
20.0       217/625000 0.00034720
20.5        21/156250 0.00013440
21.0    1071/25000000 0.00004284
21.5         7/625000 0.00001120
22.0        7/1562500 0.00000448
22.5        1/2500000 0.00000040
23.0        1/3125000 0.00000032
24.0      1/100000000 0.00000001

The total probability of 22 points or higher:

521/100000000 = 0.00000521
  

  Posted by Charlie on 2024-12-08 08:25:50
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information