All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Probability
Total Point Probability (Posted on 2024-12-08) Difficulty: 3 of 5
In a certain British soccer pool, the objective is to pick games that end in a tie. The ticket buyer picks 8 games from a list of 45 or more. For each of these games,

if the teams tie, the player gets 3 points, if the visiting team wins, they get 2 points, and if the home team wins, they get 1.5 points. The entry with the highest point total wins.

Assume that for each game, the probability of the home team’s winning is 0.5, the probability of the visiting team’s winning is 0.4, and the probability of a tie is 0.1.

Determine the probability that the total points for an entry will be 22 or higher.

No Solution Yet Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Computer Solution Comment 2 of 2 |
W = Home team wins
L = Home team loses
T = Tie

Consider all the ways 8 nonnegative integers can sum to 8.
Identify specific numbers for W, L, T which result in >= 22.

Final answer:  5.210000000000003e-06
                   = 0.00000521

My check sum for the sum of all probabilities was slightly less than 1 by about 1/2 of 1 percent, I assume from rounding/truncation math errors.
------------------
facs = [1,1,2,6,24,120,720,5040,40320]

def score(wlt):
    """  wlt is a string formed by concatenating the wins, losses, ties from any set of games picked """
    W = int(wlt[0])
    L = int(wlt[1])
    T = int(wlt[2])
    return 3*T + 2*L + 1.5*W

def prob(wlt):
    W = int(wlt[0])
    L = int(wlt[1])
    T = int(wlt[2])
    factor = facs[8] / (facs[W]*facs[L]*facs[T])
    return (.1**T * .4**L * .5**W) * factor

sumOfAllProbs = 0
prob_ge_22 = 0
for W in range(8):
    for L in range(8):
        if W + L > 8:
            continue
        T = 8 - W - L
        pattern = str(W) + str(L) + str(T)
        print(W,L,T,
              ' ', pattern, 
              ' ', score(pattern),
              ' ', prob(pattern))
        sumOfAllProbs += prob(pattern)
        if score(pattern) >= 22:
            prob_ge_22 += prob(pattern)
            
print('\n', 'probabilities should sum to 1.0 ')
print(sumOfAllProbs,'\n')
print(prob_ge_22)

------ output  ------
0 0 8   008   24.0   1.0000000000000005e-08
0 1 7   017   23.0   3.200000000000001e-07
0 2 6   026   22.0   4.480000000000002e-06
0 3 5   035   21.0   3.5840000000000016e-05
0 4 4   044   20.0   0.00017920000000000007
0 5 3   053   19.0   0.0005734400000000003
0 6 2   062   18.0   0.0011468800000000005
0 7 1   071   17.0   0.0013107200000000005
1 0 7   107   22.5   4.0000000000000014e-07
1 1 6   116   21.5   1.1200000000000005e-05
1 2 5   125   20.5   0.00013440000000000007
1 3 4   134   19.5   0.0008960000000000004
1 4 3   143   18.5   0.0035840000000000017
1 5 2   152   17.5   0.008601600000000004
1 6 1   161   16.5   0.011468800000000005
1 7 0   170   15.5   0.006553600000000002
2 0 6   206   21.0   7.0000000000000024e-06
2 1 5   215   20.0   0.00016800000000000007
2 2 4   224   19.0   0.0016800000000000007
2 3 3   233   18.0   0.008960000000000003
2 4 2   242   17.0   0.02688000000000001
2 5 1   251   16.0   0.04300800000000002
2 6 0   260   15.0   0.02867200000000001
3 0 5   305   19.5   7.000000000000002e-05
3 1 4   314   18.5   0.0014000000000000004
3 2 3   323   17.5   0.011200000000000005
3 3 2   332   16.5   0.04480000000000002
3 4 1   341   15.5   0.08960000000000003
3 5 0   350   14.5   0.07168000000000002
4 0 4   404   18.0   0.00043750000000000006
4 1 3   413   17.0   0.007000000000000002
4 2 2   422   16.0   0.042000000000000016
4 3 1   431   15.0   0.11200000000000003
4 4 0   440   14.0   0.11200000000000002
5 0 3   503   16.5   0.0017500000000000005
5 1 2   512   15.5   0.021000000000000005
5 2 1   521   14.5   0.08400000000000002
5 3 0   530   13.5   0.11200000000000003
6 0 2   602   15.0   0.004375
6 1 1   611   14.0   0.035
6 2 0   620   13.0   0.07
7 0 1   701   13.5   0.00625
7 1 0   710   12.5   0.025

 probabilities should sum to 1.0 
0.9954383900000003 

5.210000000000003e-06


  Posted by Larry on 2024-12-08 09:49:51
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information