All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Find the triplet (Posted on 2024-12-19) Difficulty: 3 of 5
Find all nonnegative integer solutions to the following equation

64 + 3x5y = 17z

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Computer solution | Comment 1 of 2
64 is 13 mod 17
So the mod 17 value  of 3^x * 5^y must be 4

A list of 3^n and 5^n mod 17
n 3 5
0 1 1
1 3 5
2 9 8
3 10 6
4 13 13
5 5 14
6 15 2
7 11 10
8 16 16
9 14 12
10 8 9
11 7 11
12 4 4
13 12 3
14 2 15
15 6 7
16 1 1
17 3 5
18 9 8
19 10 6
20 13 13
21 5 14
22 15 2
23 11 0
24 16 0

Consider a=3^x and  b=5^y
Need to find examples where (a*b) mod 17 equals 4:
[1, 4], [2, 2], [3, 7], [5, 11], [6, 12], [8, 9], [10, 14], [15, 15]

Then check each pair to see if the LHS is a power of 17 rather than merely a multiple of 17.

Answer:  when (x,y,z) = (2,2,2), both sides equal 289

------
import math
power17s = [17**n for n in range(200)]

ans = []
for a in range(16):
    for b in range(16):
        c = a*b
        pair = [a,b]
        if c%17 == 4 and pair not in ans:
            ans.append(pair)
print('Possible exponents for 3 and 5', '\n', ans)
for pair in ans:
    lhs = 64 + 3**pair[0] * 5**pair[1]
    if lhs in power17s:
        z = round(math.log(lhs) / math.log(17))
        triplet = pair
        triplet.append(z)
        print('\n', '(x,y,z): ', triplet)

---- program output:
Possible exponents for 3 and 5 
 [[1, 4], [2, 2], [3, 7], [4, 1], [5, 11], [6, 12], [7, 3], [8, 9], [9, 8], [10, 14], [11, 5], [12, 6], [14, 10], [15, 15]]

 (x,y,z):  [2, 2, 2]

  Posted by Larry on 2024-12-19 08:13:47
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information