All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Science
Shining Light (Posted on 2024-12-19) Difficulty: 3 of 5
Suppose a type of glass is such that, for any incoming light: 70 percent of light shining from one side is transmitted through to the other side; 20 percent of the light is reflected (off of the outer surface) back in the direction from which it came; the remaining 10 percent is absorbed in the glass.

How much of an original light source will be transmitted through three panes of glass? It is assumed that the panes are parallel and at a small distance from each other.

Ignore any loss of light above or below the panes (which is the same as assuming the panes extend infinitely in all four directions). Express your answer as a ratio of integers.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer-aided solution | Comment 1 of 4
Let a = 1 represent the light coming from the left onto the first pane of glass, and b represent light striking the middle pane from the left (i.e., from the direction of the first pane) and c representing the light striking the third pane coming from the same direction.

Let d be the light being directed outward (leftward as I have defined it) from the first pane, combining (as do most of these rays) both the initial reflection and any coming reflection from and transmission through the middle layer. Likewise, e is the leftward total light between the first and middle panes, and f is the total leftward light between the middle and last panes.

b=7a/10 + e/5
c=7b/10 + f/5
d=7e/10 + a/5
e=7f/10 + b/5
f=c/5

For some reason, Wolfram Alpha couldn't solve this set of simultaneous equations, so:

clearvars
c=.1;d=.1;e=.1;f=.05;
for i=1:25
  b=7/10+e/5;
  c=7*b/10+f/5;
  d=7*e/10+1/5;
  e=7*f/10+b/5;
  f=c/5;
  fprintf('%17.15f ',1,b,c )a
  fprintf(' ')
  fprintf('%17.15f ',d,e,f)
  fprintf(' ')
end
  sym([1 b c ])
  sym([ d e f])

  b=sym(b);
  c=sym(c);
  d=sym(d);
  e=sym(e);
  f=sym(f);

finds by successive approximations:

         a                b                c
         d                e                f
     
1.000000000000000 0.720000000000000 0.514000000000000 
0.270000000000000 0.179000000000000 0.102800000000000 
1.000000000000000 0.735800000000000 0.535620000000000 
0.325300000000000 0.219120000000000 0.107124000000000 
1.000000000000000 0.743824000000000 0.542101600000000 
0.353384000000000 0.223751600000000 0.108420320000000 
1.000000000000000 0.744750320000000 0.543009288000000 
0.356626120000000 0.224844288000000 0.108601857600000 
1.000000000000000 0.744968857600000 0.543198571840000 
0.357391001600000 0.225015071840000 0.108639714368000 
1.000000000000000 0.745003014368000 0.543230052931200 
0.357510550288000 0.225048402931200 0.108646010586240 
1.000000000000000 0.745009680586240 0.543235978527616 
0.357533882051840 0.225054143527616 0.108647195705523 
1.000000000000000 0.745010828705523 0.543237019234971 
0.357537900469331 0.225055202734971 0.108647403846994 
1.000000000000000 0.745011040546994 0.543237209152295 
0.357538641914480 0.225055390802295 0.108647441830459 
1.000000000000000 0.745011078160459 0.543237243078413 
0.357538773561606 0.225055424913413 0.108647448615683 
1.000000000000000 0.745011084982683 0.543237249211014 
0.357538797439389 0.225055431027514 0.108647449842203 
1.000000000000000 0.745011086205503 0.543237250312293 
0.357538801719260 0.225055432130643 0.108647450062459 
1.000000000000000 0.745011086426128 0.543237250510782 
0.357538802491450 0.225055432328947 0.108647450102156 
1.000000000000000 0.745011086465789 0.543237250546484 
0.357538802630263 0.225055432364667 0.108647450109297 
1.000000000000000 0.745011086472933 0.543237250552913 
0.357538802655267 0.225055432371094 0.108647450110583 
1.000000000000000 0.745011086474219 0.543237250554070 
0.357538802659766 0.225055432372252 0.108647450110814 
1.000000000000000 0.745011086474450 0.543237250554278 
0.357538802660576 0.225055432372460 0.108647450110856 
1.000000000000000 0.745011086474492 0.543237250554315 
0.357538802660722 0.225055432372497 0.108647450110863 
1.000000000000000 0.745011086474499 0.543237250554322 
0.357538802660748 0.225055432372504 0.108647450110864 
1.000000000000000 0.745011086474501 0.543237250554323 
0.357538802660753 0.225055432372505 0.108647450110865 
1.000000000000000 0.745011086474501 0.543237250554324 
0.357538802660754 0.225055432372505 0.108647450110865 
1.000000000000000 0.745011086474501 0.543237250554324 
0.357538802660754 0.225055432372505 0.108647450110865 
1.000000000000000 0.745011086474501 0.543237250554324 
0.357538802660754 0.225055432372506 0.108647450110865 
1.000000000000000 0.745011086474501 0.543237250554324 
0.357538802660754 0.225055432372506 0.108647450110865 
1.000000000000000 0.745011086474501 0.543237250554324 
0.357538802660754 0.225055432372506 0.108647450110865 

and then it finds the appropriate rational values

ans =
[1, 336/451, 245/451]
ans =
[645/1804, 203/902, 49/451]

which do indeed solve the simultaneous equations.

Since what we're going after is the amount of light exiting the last pane without reflecting back:

Since 245/451 of the original light strikes the last pane and 7/10 of that finally escapes from the triple pane set, that amount is 245*7/4510 = 343/902 of the original light shining on the first pane comes out past the last pane.

Edited on December 19, 2024, 1:46 pm
  Posted by Charlie on 2024-12-19 13:29:27

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information