All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
24 Four Digit Integers Puzzle (Posted on 2024-12-29) Difficulty: 3 of 5
A, B, C, and D represent four different digits that can be combined to yield 24 different four-digit integers.

These 24 integers have the following properties:

  • 4 are primes.
  • 7 are the products of two different odd primes.
  • 1 is the square of a prime.
  • 8 are divisible by 2 but not by 4.
  • 2 are divisible by 4 but not by 8.
  • 1 is divisible by 8 but not by 16
  • 1 is divisible by 16.
Determine the values of A, B, C, and D.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 2 of 3 |
clearvars,clc
digs='1234567890';
idx=combinator(10,4,'c');
setsOf4=digs(idx);
for i=1:length(setsOf4)
  s=setsOf4(i,:);
  prms=perms(s);
  for j=1:length(prms)
    prm(j)=str2double(prms(j,:));
  end
  % prm(prm<1000)=[];
  if length(prm)==24
    pCt=length(prm(isprime(prm)));
    if pCt==4
      spCt=0; j=1;sqCt=0;
      while j<=length(prm)
        f=factor(prm(j));
        if length(f)==2
          if f(1)~=f(2)
            if mod(f(1),2)==1 && mod(f(2),2)==1
              spCt=spCt+1;
            end
          end

          if f(1)==f(2)
            sqCt=sqCt+1;
          end
        end
        j=j+1;
      end


      if spCt==7 && sqCt==1
        % disp(prm )
        for j=1:length(prm)
          ff=factor(prm(j));
          fprintf('%4d %3d  ',prm(j),length(ff))
          fprintf('%d ',prm(j),ff)
          if length(ff)==2
            if ff(1)==ff(2)
              fprintf('****')
            end
          end
          fprintf('\n')
        end
        fprintf('\n')
      end
    end
  end
end

uses only the first 3 properties to find the three digits are 1, 3, 4 and 8. Examination of the results show the other 4 criteria are also true:

4-digit	  number of       prime 
integers  prime factors factors
8431        1    8431 
8413      2    47 179      *
8341      2    19 439      *
8314      2    2 4157 
8143      2    17 479      *
8134      4    2 7 7 83 
4831      1    4831 
4813      1    4813 
4381      2    13 337      *
4318      3    2 17 127 
4183      2    47 89      *
4138      2    2 2069 
3841      2    23 167      *
3814      2    2 1907 
3481      2    59 59 ****   The perfect square
3418      2    2 1709 
3184      5    2 2 2 2 199 
3148      3    2 2 787 
1843      2    19 97      *
1834      3    2 7 131 
1483      1    1483 
1438      2    2 719 
1384      4    2 2 2 173 
1348      3    2 2 337 

A single asterisk marks the integers with 2 different odd prime factors. Primes of course have 1 prime factor.

  Posted by Charlie on 2024-12-29 10:08:35
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information