All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
AB/CD + EF/GHJ = A (Posted on 2025-01-10) Difficulty: 3 of 5
Solve the following cryptarithm, in which none of the letters is zero.
AB/CD + EF/GHJ = A
Each of the letters represents a different digit, and each digit is a different letter.

No Solution Yet Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Computer solution | Comment 1 of 2
5 7 1 2 9 6 3 8 4
AB/CD + EF/GHJ = A
57/12 + 96/384 = 5
4.75  +  0.25 = 5

--------
from itertools import permutations
for perm in permutations([1,2,3,4,5,6,7,8,9]):
    A = perm[0]
    B = perm[1]
    C = perm[2]
    D = perm[3]
    E = perm[4]
    F = perm[5]
    G = perm[6]
    H = perm[7]
    J = perm[8]
    if (10*A+B)/(10*C+D) + (10*E+F)/(100*G+10*H+J) == A:
        print(A,B,C,D,E,F,G,H,J)
        print('AB/CD + EF/GHJ = A')
        print('{}{}/{}{} + {}{}/{}{}{} = {}'.format(A,B,C,D,E,F,G,H,J,A))
        print((10*A+B)/(10*C+D) , ' + ', (10*E+F)/(100*G+10*H+J), '=', A)

  Posted by Larry on 2025-01-10 08:04:53
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (3)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information