All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Square of a Rational Number (Posted on 2025-04-04) Difficulty: 3 of 5
Determine the pair (a,b) of positive integers such that each of a/b, a/b+5, and a/b-5 is the square of a rational number.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 3
The (a,b) pair that produces the fractions reduced to lowest terms is (1681, 144).

1681/144 = (41/12)^2

(1681 + 5*144)/144 = 2401/144 = (49/12)^2

(1681 - 5*144)/144 =  961/144 = (31/12)^2

Square multiples of these work also.

clearvars
sqs=[1:700].^2;
for asub=1:700
  a=sym(sqs(asub));
  for bsub=1:700
    b=sym(sqs(bsub));
    if a/b>=5
      t1=a/b+5; t2=a/b-5;
      [n,d]=numden(t1);
      if round(sqrt(n))^2==n
        if round(sqrt(d))^2==d
      [n,d]=numden(t2);
      if round(sqrt(n))^2==n
        if round(sqrt(d))^2==d
          disp([a,b, sqrt(a),sqrt(b), a/b])
        end
      end
        end
      end
    end
  end
end
           
            squaare
             roots
  a     b    a   b   reduced
 
[1681, 144, 41, 12, 1681/144]
[6724, 576, 82, 24, 1681/144]
[15129, 1296, 123, 36, 1681/144]
[26896, 2304, 164, 48, 1681/144]
[42025, 3600, 205, 60, 1681/144]
[60516, 5184, 246, 72, 1681/144]
[82369, 7056, 287, 84, 1681/144]
[107584, 9216, 328, 96, 1681/144]
[136161, 11664, 369, 108, 1681/144]
[168100, 14400, 410, 120, 1681/144]
[203401, 17424, 451, 132, 1681/144]
[242064, 20736, 492, 144, 1681/144]
[284089, 24336, 533, 156, 1681/144]
[329476, 28224, 574, 168, 1681/144]
[378225, 32400, 615, 180, 1681/144]
[430336, 36864, 656, 192, 1681/144]
[485809, 41616, 697, 204, 1681/144]

  Posted by Charlie on 2025-04-04 08:59:26
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information