All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Sum of four squares (Posted on 2025-04-14) Difficulty: 3 of 5
There are infinitely many sets of positive integers A<B<C<D such that A^2+B^2, A^2+B^2+C^2, and A^2+B^2+C^2+D^2 are all squares. Find the value of A≤ 1500 which leads to the largest number of solutions.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts A computer solution | Comment 3 of 5 |
Algorithmic points which I hope made the program faster:
(1) Once A^2 or A^2+B^2 or A^2+B^2+C^2 has been calculated once, the total is put into a list or dictionary to use as a lookup table.
(2) I first found a complete answer for A^2+B^2, then searched only those (A,B) pairs combined with all possible C values.
Then limited the final search to only the (A,B,C) triplets which resolved to a square when checking all D values.
I thought about limiting the 2nd and 3rd searches to only those pair or triplets which had a fairly large count (I guess this would be a greedy algorithm), but ended up not doing so.

Results  (I'll put code in a separate comment)
I started with maximum values for A,B,C,D as 1500, 1800, 2100, 2400 (ie not very large).  This found A=216 as the value with the most solutions.

I increased maximum values for A,B,C,D as 1500, 2500, 3500, 4500.  This found the most values for A when all conditions were met was A=288 (I found 121 such quadruplets).
Choosing larger values for maximum B,C,D might yield yet a different result for the "best A".

Here are the 121 A,B,C,D quadruplets found with A=288
 [288, 330, 584, 1752],
 [288, 384, 476, 507],
 [288, 384, 476, 2145],
 [288, 384, 476, 4368],
 [288, 384, 504, 522],
 [288, 384, 504, 697],
 [288, 384, 504, 928],
 [288, 384, 504, 1305],
 [288, 384, 504, 1610],
 [288, 384, 504, 2030],
 [288, 384, 504, 2475],
 [288, 384, 504, 3328],
 [288, 384, 504, 4147],
 [288, 384, 550, 1752],
 [288, 384, 640, 840],
 [288, 384, 640, 1122],
 [288, 384, 640, 1155],
 [288, 384, 640, 1500],
 [288, 384, 640, 1920],
 [288, 384, 640, 2436],
 [288, 384, 640, 3150],
 [288, 384, 640, 3960],
 [288, 384, 693, 1124],
 [288, 384, 728, 1635],
 [288, 384, 900, 931],
 [288, 384, 900, 1071],
 [288, 384, 900, 1265],
 [288, 384, 900, 1360],
 [288, 384, 900, 1547],
 [288, 384, 900, 1584],
 [288, 384, 900, 2448],
 [288, 384, 900, 2501],
 [288, 384, 900, 2800],
 [288, 384, 900, 2975],
 [288, 384, 900, 3393],
 [288, 384, 900, 3757],
 [288, 384, 900, 4275],
 [288, 384, 1152, 1265],
 [288, 384, 1152, 1430],
 [288, 384, 1152, 1664],
 [288, 384, 1152, 1836],
 [288, 384, 1152, 2135],
 [288, 384, 1152, 2340],
 [288, 384, 1152, 2560],
 [288, 384, 1152, 2914],
 [288, 384, 1152, 3211],
 [288, 384, 1152, 3640],
 [288, 384, 1152, 3960],
 [288, 384, 1235, 3180],
 [288, 384, 1400, 1554],
 [288, 384, 1400, 2538],
 [288, 384, 1400, 2775],
 [288, 384, 1400, 3552],
 [288, 384, 1768, 3435],
 [288, 384, 1890, 2160],
 [288, 384, 1890, 2600],
 [288, 384, 1890, 4000],
 [288, 384, 2376, 3232],
 [288, 384, 2860, 3045],
 [288, 384, 2860, 3705],
 [288, 540, 759, 1080],
 [288, 540, 759, 1300],
 [288, 540, 759, 2000],
 [288, 540, 759, 2340],
 [288, 540, 759, 2728],
 [288, 540, 759, 3740],
 [288, 540, 759, 4004],
 [288, 540, 816, 931],
 [288, 540, 816, 1071],
 [288, 540, 816, 1265],
 [288, 540, 816, 1360],
 [288, 540, 816, 1547],
 [288, 540, 816, 1584],
 [288, 540, 816, 2448],
 [288, 540, 816, 2501],
 [288, 540, 816, 2800],
 [288, 540, 816, 2975],
 [288, 540, 816, 3393],
 [288, 540, 816, 3757],
 [288, 540, 816, 4275],
 [288, 540, 1309, 2244],
 [288, 540, 1309, 3468],
 [288, 540, 1680, 2384],
 [288, 540, 1785, 2516],
 [288, 540, 2565, 3516],
 [288, 540, 2720, 2784],
 [288, 616, 1056, 2355],
 [288, 616, 1275, 2244],
 [288, 616, 1275, 3468],
 [288, 616, 1365, 1548],
 [288, 616, 1365, 3660],
 [288, 616, 1632, 1974],
 [288, 616, 1632, 2415],
 [288, 616, 1632, 2601],
 [288, 616, 1632, 3315],
 [288, 616, 1632, 3549],
 [288, 616, 1632, 4455],
 [288, 741, 1060, 1092],
 [288, 741, 1060, 3180],
 [288, 741, 1908, 2756],
 [288, 741, 1908, 3960],
 [288, 741, 1908, 4240],
 [288, 840, 1184, 1554],
 [288, 840, 1184, 2538],
 [288, 840, 1184, 2775],
 [288, 840, 1184, 3552],
 [288, 840, 1225, 3816],
 [288, 840, 1665, 2516],
 [288, 1134, 1296, 2328],
 [288, 1134, 1560, 2160],
 [288, 1134, 1560, 2600],
 [288, 1134, 1560, 4000],
 [288, 1134, 2400, 3560],
 [288, 1134, 2808, 4056],
 [288, 1280, 2460, 2784],
 [288, 1716, 1827, 3364],
 [288, 1716, 2223, 3764],
 [288, 1716, 2320, 2739],
 [288, 1716, 2320, 3045],
 [288, 1716, 2320, 3705],
 [288, 1716, 3139, 4020]

  Posted by Larry on 2025-04-16 12:55:55
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (9)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information