All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Zigzags and Zagzigs (Posted on 2025-05-08) Difficulty: 3 of 5
Zigzag and zagzig numbers are positive integers whose digits strictly alternate between decreasing and increasing.
If the first step, from the first to the second digit is a decrease, then it is a zigzag number. An example is 5372957391.

Similarly a zagzig number is when the first step from the first to the second digit is an increase, e.g.3729573.

Find the smallest number of digits, d, for which both conditions are true:
* a unique d-digit zeroless zigzag prime whose square is a zeroless zigzag
and also
*a unique d-digit zeroless zagzig prime whose square is a zeroless zigzag

And also find the two primes and their squares.

Note that d=2 almost works, except that the squares are zagzigs:
19^2 = 361
43^2 = 1849

No Solution Yet Submitted by Larry    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution Comment 1 of 1
p=primes(100000);
for pNo=1:length(p)
  pr=p(pNo);
  if pr>10
  if zig(pr)
    sq=pr^2;
    if zig(sq)
      fprintf('%7d %10d zigzag zigzag\n',[pr sq])
    end
  end
  end

  if pr>10
  if zag(pr)
    sq=pr^2;
    if zig(sq)
      fprintf('%7d %10d zagzig zigzag\n',[pr sq])
    end
  end
  end
end

  
 
function tval=zig(n)
  v1=num2str(n);
  tval=true;
  for i=2:2:length(v1) 
    if v1(i)>=v1(i-1) 
      tval=false;
    end
    if i<length(v1)
      if v1(i)>=v1(i+1)
        tval=false;
      end
    end
  end 
end

function tval=zag(n)
  v1=num2str(n);
  tval=true;
  for i=2:2:length(v1)
    if v1(i)<=v1(i-1)  
      tval=false;
    end
  end
  if i<length(v1)
    if v1(i)<=v1(i+1)
      tval=false;
    end
  end
  
end

finds that for d=2 

23^2 = 529 and 79^2 = 6241 are both of type zagzig zigzag, while

71^2 = 5041 is of type zigzag zigzag

but the zero in 5041 keeps it from being zeroless.

But d=3 finds

    293^2 = 85849 zagzig zigzag
    313^2 = 97969 zigzag zigzag

n n^2      23        529 zagzig zigzag
     71       5041 zigzag zigzag
     79       6241 zagzig zigzag
    101      10201 zigzag zigzag
    103      10609 zigzag zigzag
    293      85849 zagzig zigzag
    313      97969 zigzag zigzag
    571     326041 zagzig zigzag
    659     434281 zigzag zigzag
    739     546121 zigzag zigzag
   1447    2093809 zagzig zigzag
   1801    3243601 zagzig zigzag
   9041   81739681 zigzag zigzag
   9091   82646281 zigzag zigzag
  10103  102070609 zigzag zigzag
  10303  106151809 zigzag zigzag
  14563  212080969 zagzig zigzag
  20101  404050201 zigzag zigzag
  20201  408080401 zigzag zigzag
  20327  413186929 zigzag zigzag
  26687  712195969 zagzig zigzag
  27197  739676809 zagzig zigzag
  30103  906190609 zigzag zigzag
  30403  924342409 zigzag zigzag
  30649  939361201 zigzag zigzag
  30937  957097969 zigzag zigzag
  54869 3010607161 zigzag zigzag
  63419 4021969561 zigzag zigzag
  63929 4086917041 zigzag zigzag
  71329 5087826241 zigzag zigzag
  71909 5170904281 zigzag zigzag
  78571 6173402041 zagzig zigzag
  80329 6452748241 zigzag zigzag
  86959 7561867681 zigzag zigzag
  97829 9570513241 zigzag zigzag
  98929 9786947041 zigzag zigzag

  Posted by Charlie on 2025-05-08 13:48:10
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information